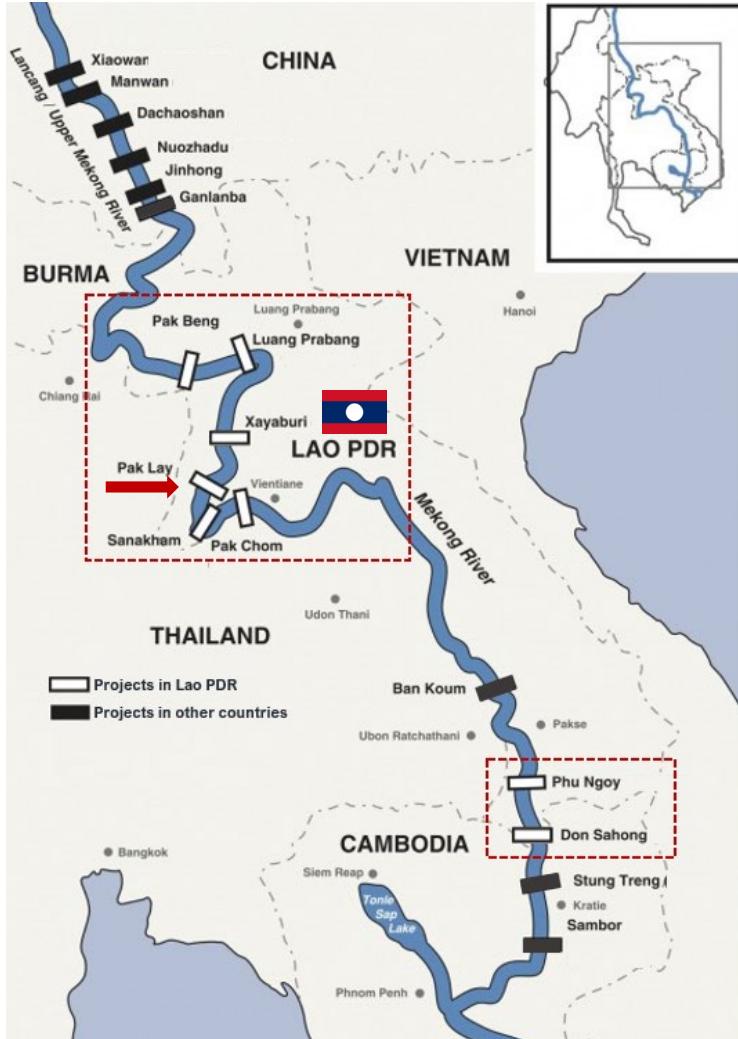


# Pak Lay Hydroelectric Power Project


## Regional Stakeholder Forums

12<sup>th</sup> June 2024

1. Project Overview and Current Status
2. Basic Design - Recap
3. Addressing JAP Recommendation – Update progress
4. Q&A

# 1. Project Overview and Current Status

# Project Overview



## PROJECT COMPANY

Pak Lay Power Company Limited, established under Lao PDR Law in Feb 2023 for the purpose to develop 770-MW hydroelectric power in Lao PDR.

## LOCATION

The 4th of 11 planned cascades (upstream to downstream) on Mekong River, Pak Lay District, Xayaburi Province, Lao PDR

## TYPE

Run-of-River

## INSTALLED CAPACITY

770 MW

## PPA CONTRACTED CAPACITY

763 MW at delivery point

## OFFTAKER

100% EGAT



## CA TERM

29 Years

## PPA TERM

29 Years

## PROJECT KEY MILESTONE

|                           |             |
|---------------------------|-------------|
| Feasibility approved      | 25 Aug 2017 |
| PDA executed              | 15 Dec 2017 |
| PNPCA completed           | 04 Apr 2019 |
| ESIA certificate approved | 31 Mar 2020 |
| Pre-construction approved | 14 May 2021 |
| Basic Design approved     | 29 Dec 2021 |
| Tariff MOU executed       | 24 Jan 2022 |
| Investment License issued | 09 Jan 2023 |
| CA executed               | 16 Feb 2023 |
| PPA executed              | 20 Mar 2023 |
| SCOD                      | 20 Mar 2032 |

Construction period is approx. 8 years



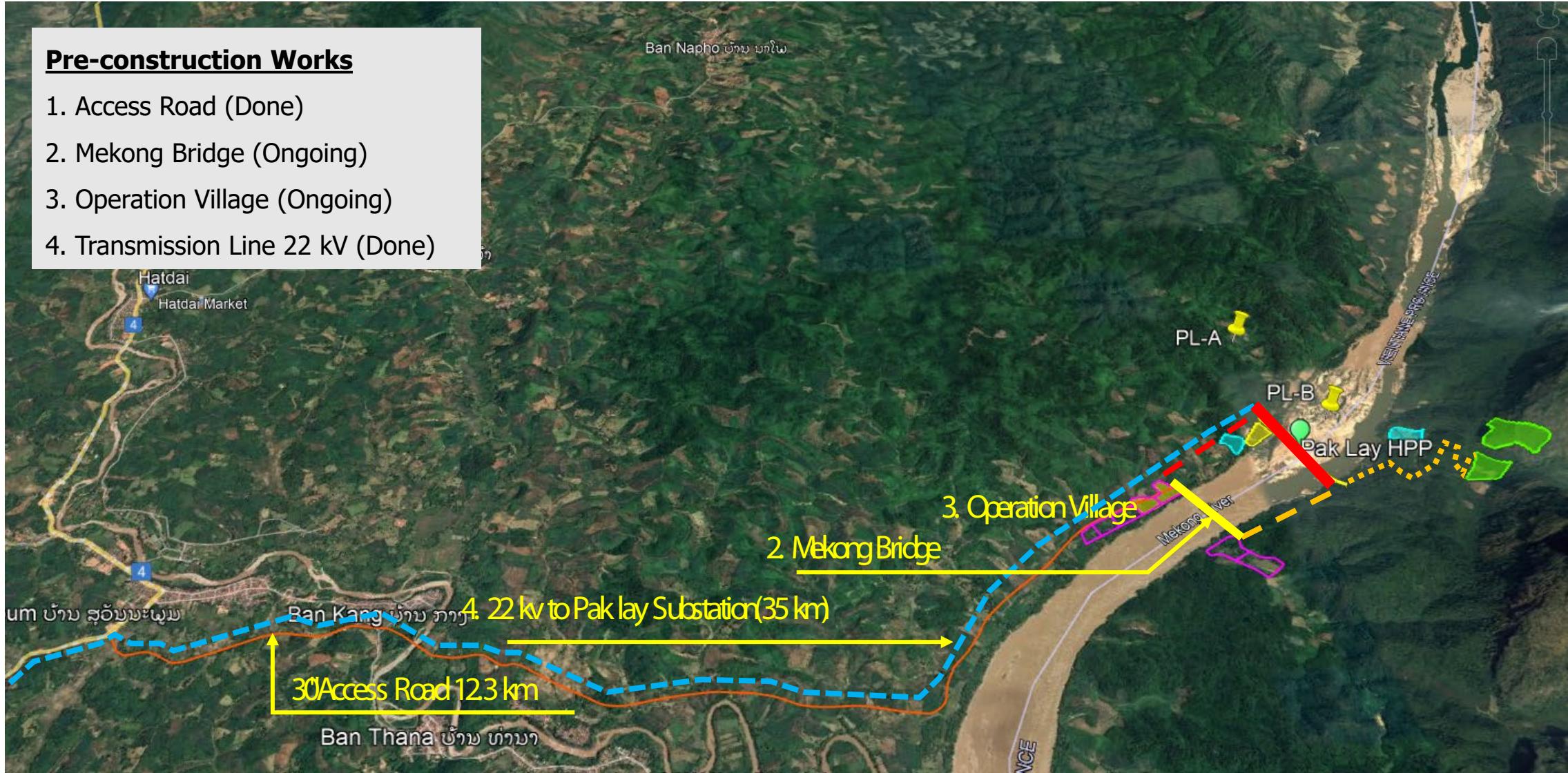
# Project Current Status

## I. Preliminary Construction Activities

|                                                 |                     |
|-------------------------------------------------|---------------------|
| ○ Construction of access road 10.3 km           | 100.00% – Completed |
| ○ Construction of Mekong bridge                 | 40.07% – Ongoing    |
| ○ Construction of Operation Village             | 55.93% – Ongoing    |
| ○ Construction works of 22 kV transmission line | 100.00% – Completed |

## II. Design and ESIA Activities

|                                                    |             |
|----------------------------------------------------|-------------|
| ○ Update design after PNPCA                        | Completed   |
| ○ Back Water Effect study                          | Completed   |
| ○ Dam break analysis / emergency action plan study | Completed   |
| ○ Update ESIA reports to MONRE                     | Submitted   |
| ○ Transmission Line ESIA                           | In Progress |
| ○ ES MMP-CP                                        | In Progress |
| ○ Sediment Monitoring Station Construction         | In Progress |

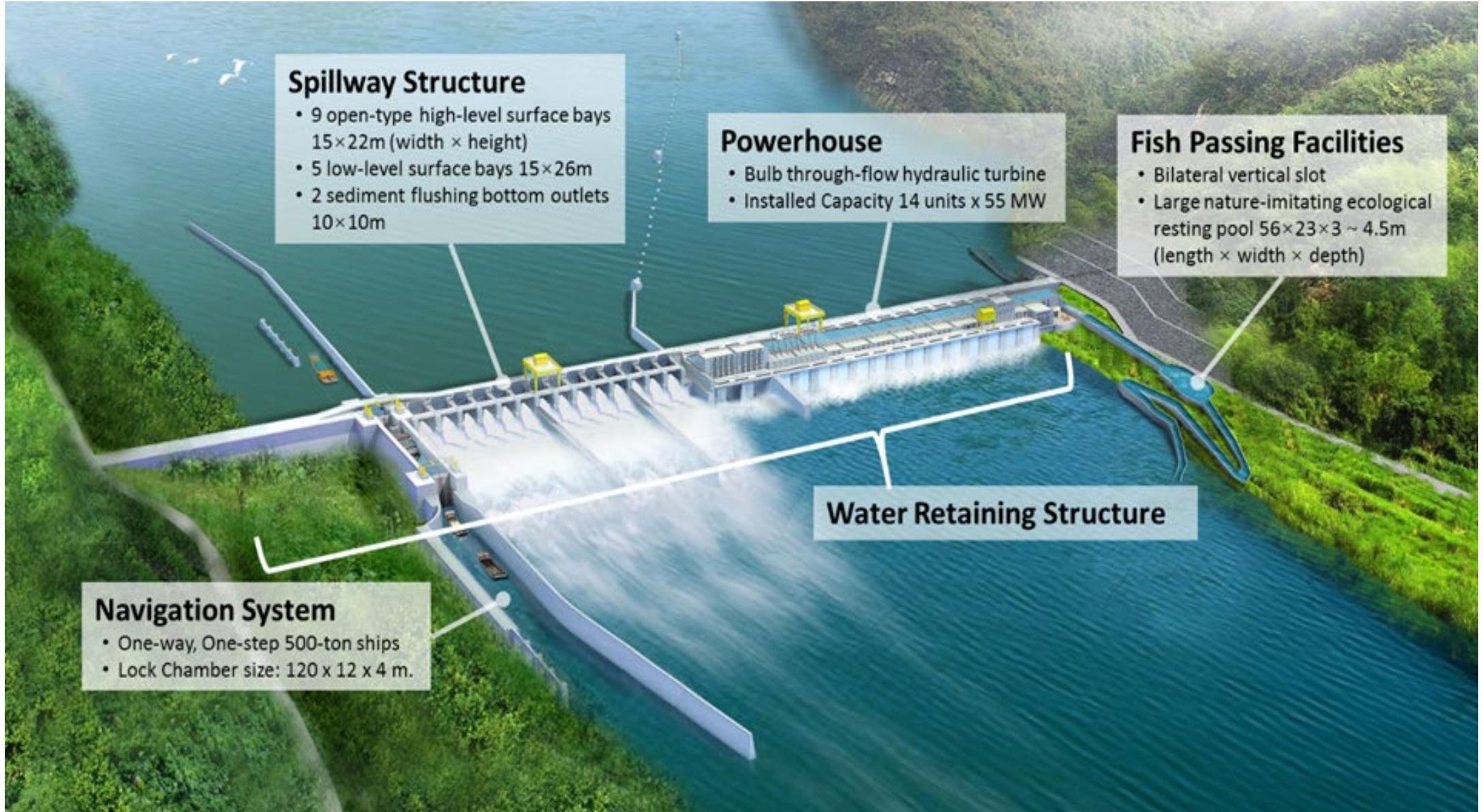

## III. Project Financing

|                                         |             |
|-----------------------------------------|-------------|
| ○ Selection of Lender's Advisors        | Completed   |
| ○ Selection of Owner's Advisors         | In Progress |
| ○ Lender's due diligence                | In Progress |
| ○ Lender negotiation for Loan Agreement | In Progress |

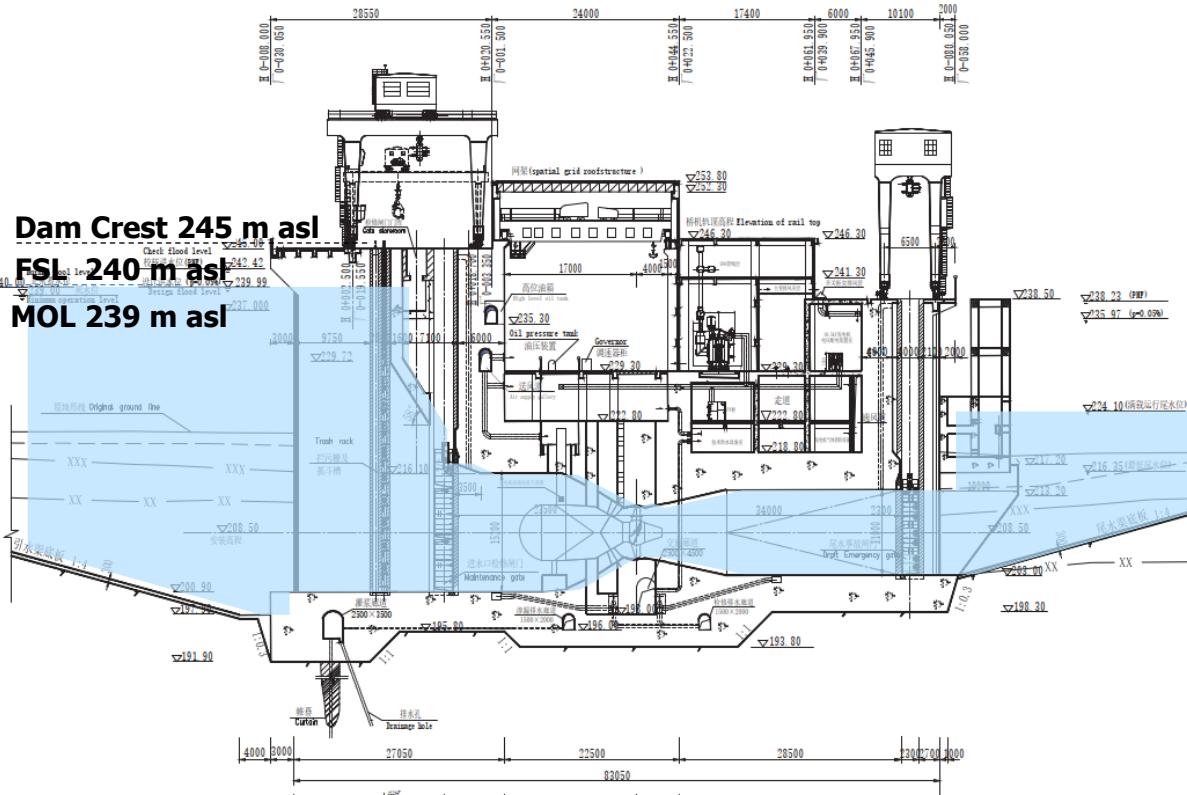
## IV. Others

|                                     |         |
|-------------------------------------|---------|
| ○ Preparing Pak Lay Project website | Ongoing |
|-------------------------------------|---------|

# Pre-construction Activities




# Pre-Construction of Access Road, Bridge, and Operation Village




## 2. Basic Design

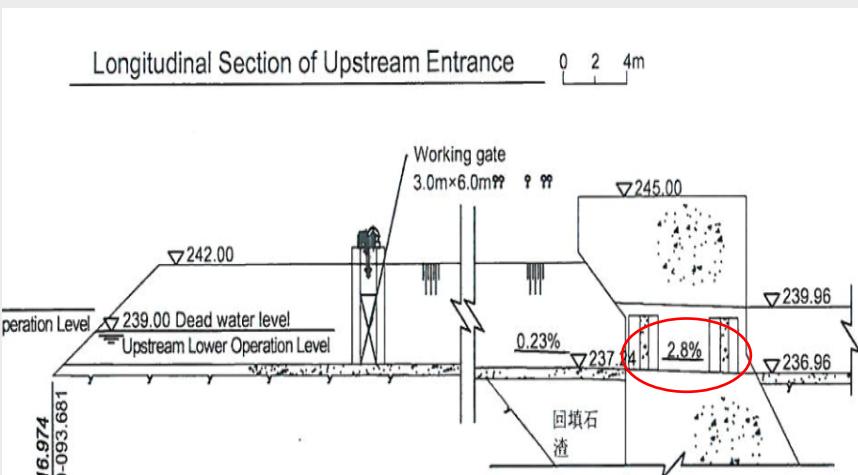
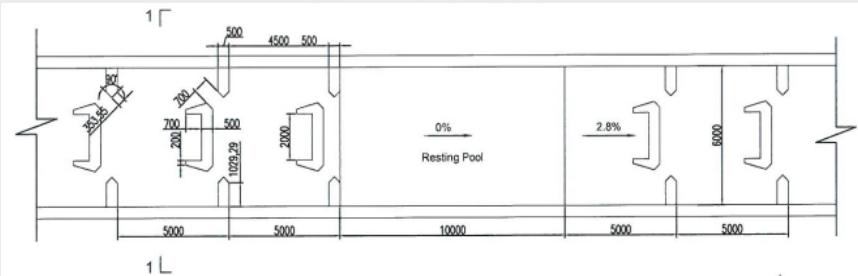
# Project Overview



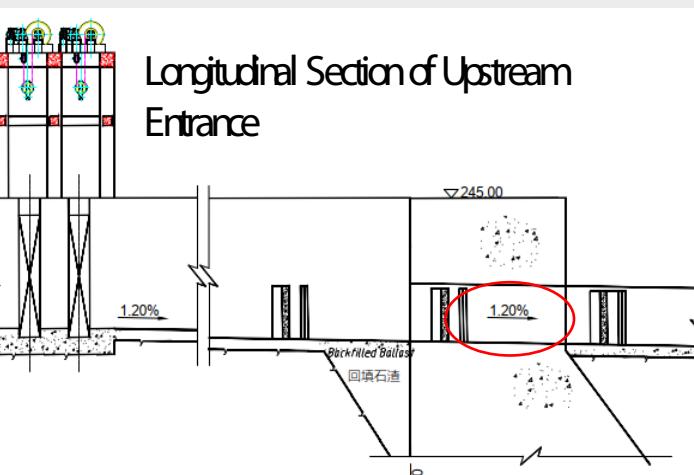
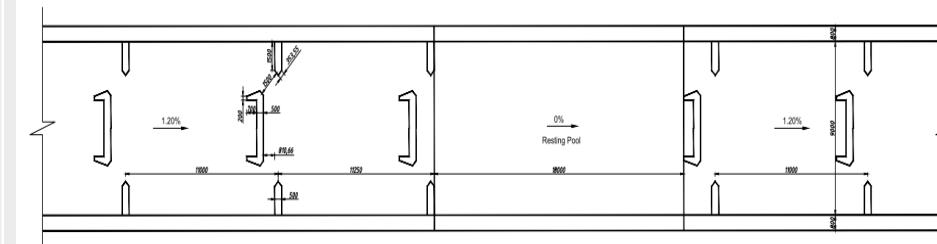
# Project Features



## Cross Section



| Characteristics               | Unit              | Value                |
|-------------------------------|-------------------|----------------------|
| <b>Hydrological data</b>      |                   |                      |
| Catchment area                | km <sup>2</sup>   | 278,400              |
| Annual mean discharge         | m <sup>3</sup> /s | 4,060                |
| <b>Main Dam</b>               |                   |                      |
| Type                          | -                 | Concrete gravity dam |
| Dam crest elevation           | m asl             | 245                  |
| Normal water level            | m asl             | 240                  |
| Minimum operation level       | m asl             | 239                  |
| <b>Powerhouse</b>             |                   |                      |
| Turbine Type                  | -                 | Bulb turbine         |
| Quantity                      | unit              | 14                   |
| Unit Rated Power              | MW                | 55                   |
| <b>Spillway (Radial Gate)</b> |                   |                      |
| Total Number                  | No                | 16                   |
| <b>Shallow Crest</b>          |                   |                      |
| - Size (W x H)                | m                 | 15.0 x 22.0          |
| - Number                      | No                | 9                    |
| <b>Deep Crest</b>             |                   |                      |
| - Size (W x H)                | m                 | 15.0 x 26.0          |
| - Number                      | No                | 5                    |
| <b>Bottom Outlet</b>          |                   |                      |
| - Size (W x H)                | m                 | 10.0 x 10.0          |
| - Number                      | No                | 2                    |

# Basic Design – Recap from 6<sup>th</sup> Oct 2023 Meeting



|    | Topic                        | Highlight                                                                                                                        | Result                                                                                 |
|----|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1. | Fish Passage                 | <ul style="list-style-type: none"><li>• Reduce fishway slope</li><li>• Add upstream and downstream fish galleries.</li></ul>     | <b>Improve fish migration.</b><br><b>Meet Preliminary Design Guideline (PDG) 2023.</b> |
| 2. | Turbine Type                 | <ul style="list-style-type: none"><li>• Bulb type (fish-friendly).</li><li>• Redesign with 5 blades-turbine.</li></ul>           | <b>Optimize operation and maintenance.</b><br><b>Improve fish migration.</b>           |
| 3. | Inflow Design Flood Criteria | <ul style="list-style-type: none"><li>• Design flood = 2,000-yr return period and Check flood = PMF.</li></ul>                   | <b>Comply with LEPTS 2018.</b>                                                         |
| 4. | Sediment Management System   | <ul style="list-style-type: none"><li>• Increase the number of Deep Crest Spillway Outlets from 3 to 5.</li></ul>                | <b>Increase sediment management efficiency.</b>                                        |
| 5. | Navigation Lock              | <ul style="list-style-type: none"><li>• Change the design to “Open Bridge”.</li><li>• Change guide wall configuration.</li></ul> | <b>Meet Preliminary Design Guideline (PDG) 2023.</b><br><b>Improve safety.</b>         |

# Updated Key Feature – Fish Passing Facilities

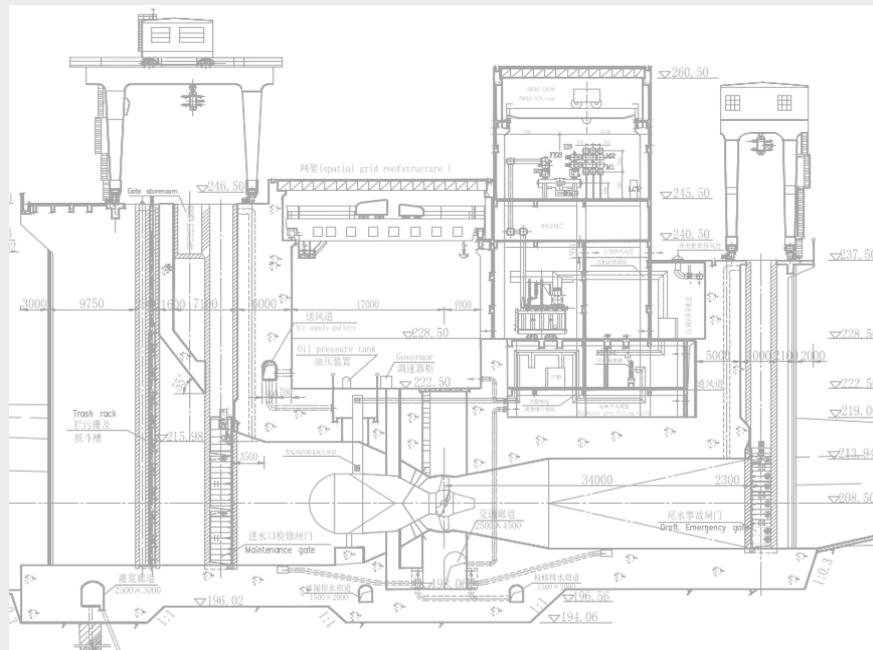
FS-Design



Updated Design

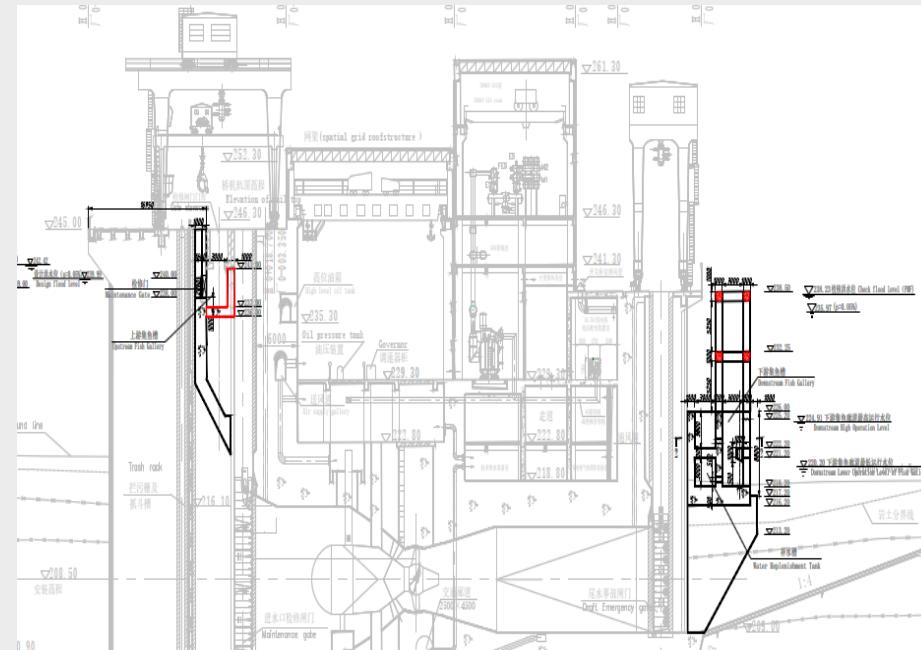


(Revised Basic Design)


Key update

Redesign of the fishway layout to reduce its slope from 2.8% to 1.20%.

To meet the PDG 2023 on flow velocity and minimum water depth in fishway.


# Updated Key Feature – Fish Passing Facilities

## FS-Design



The Layout Structure of the Powerhouse-Fish Passing Facilities (FS)

## Updated Design



The Layout Structure of the Powerhouse-Fish Passing Facilities (Revised Basic Design)

## Key update

Update the design of the Powerhouse Fish Passing Facilities by adding Upstream and Downstream Fish Galleries.

To improve the system which fish can migrate on Powerhouse Section

# Updated Key Feature – Turbine Type

# FS-Design



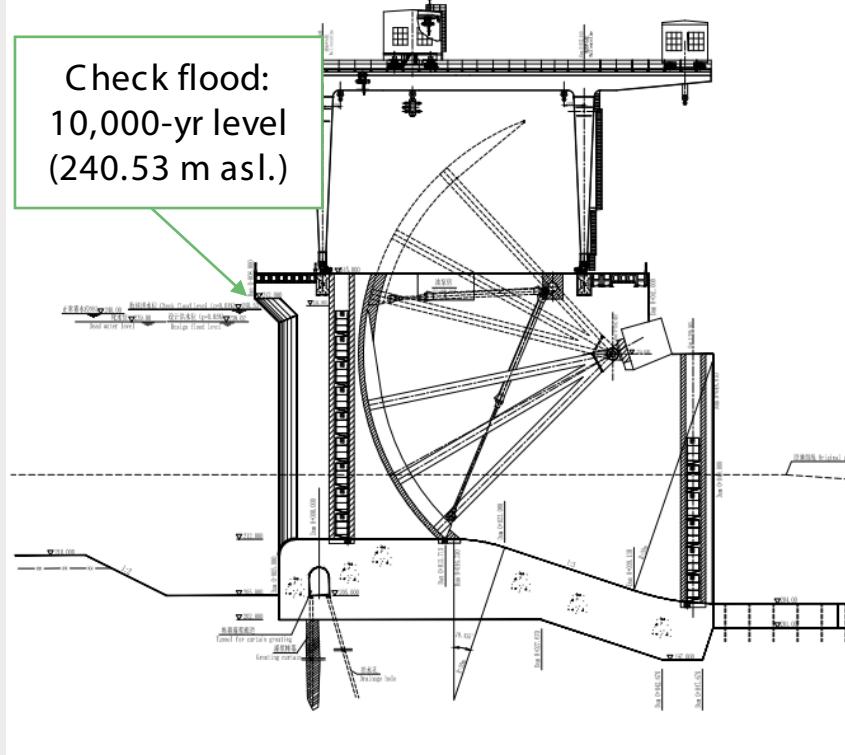
5Blades@ 8Units + 4Blades@ 6Units

- 4 Blades
- 5 Blades

## Updated Design

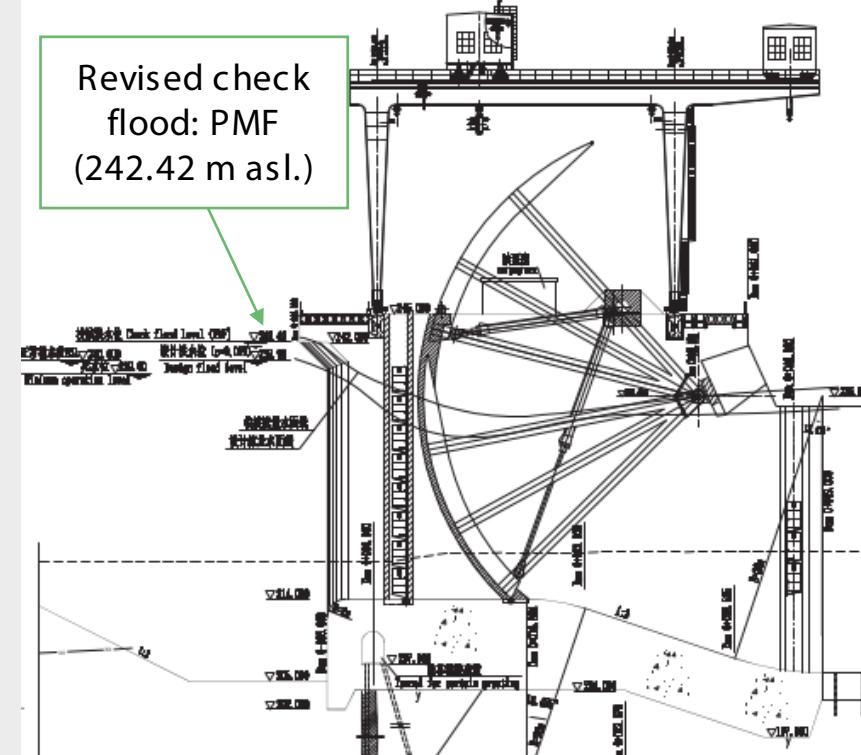


## 5Blades@14Units


## Key update

Redesign of the turbine 5  
Blades @ 14 Units  
To optimize the operation  
and maintenance

The selected Bulb Type design is “fish-friendly”.


# Updated Key Feature – Inflow Design Flood Criteria

FS-Design



Typical section (FS)

Updated Design



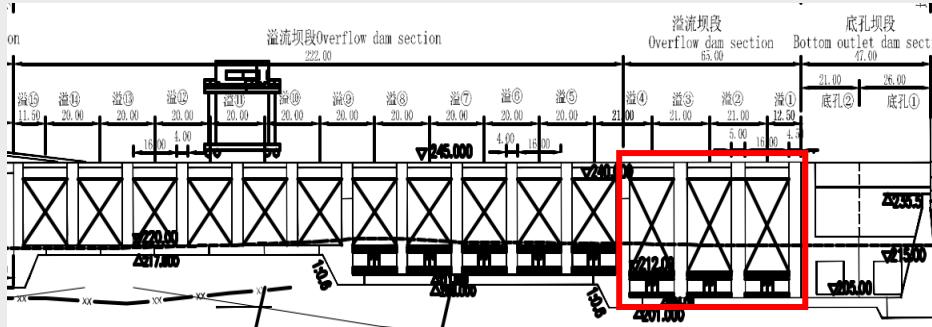
Typical section  
(Revised Basic Design Report)

Key update

## 1. The Design Flood level

- Design flood level was kept at 2,000-yr return period.

## 2. The Check Flood level

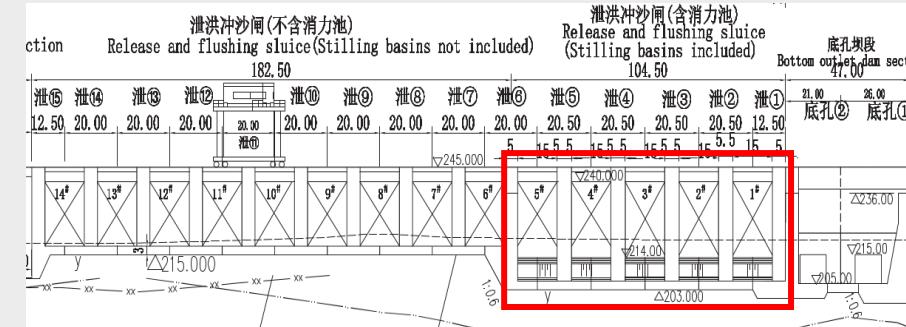

- Check flood level was raised from 10,000-yr return period to the PMF

To comply with LEPTS2018 which still have freeboard around 2.58 m.

# Updated Key Feature – Sediment Management System

## FS-Design

### Release and flushing sluice




|                                |                                  |                     |
|--------------------------------|----------------------------------|---------------------|
| Shallow Crest Spillway Outlets | Dimension (W x H, Outlet Number) | 16 m x 20 m, 11     |
|                                | Total Outlet Area                | 3520 m <sup>2</sup> |
| Deep Crest Spillway Outlets    | Dimension (W x H, Outlet Number) | 16 m x 28 m, 3      |
|                                | Total Outlet Area                | 1344 m <sup>2</sup> |

Typical section (FS)

## Updated Design

### Release and flushing sluice

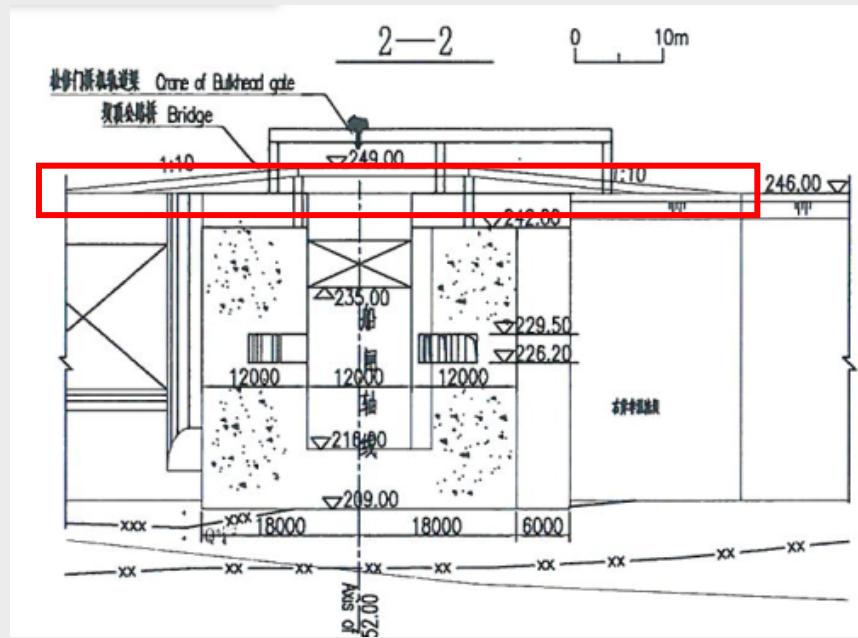


|                                |                                  |                     |
|--------------------------------|----------------------------------|---------------------|
| Shallow Crest Spillway Outlets | Dimension (W x H, Outlet Number) | 15 m x 22 m, 9      |
|                                | Total Outlet Area                | 2970 m <sup>2</sup> |
| Deep Crest Spillway Outlets    | Dimension (W x H, Outlet Number) | 15 m x 26 m, 5      |
|                                | Total Outlet Area                | 1950 m <sup>2</sup> |

Typical section  
(Revised Basic Design Report)

## Key update

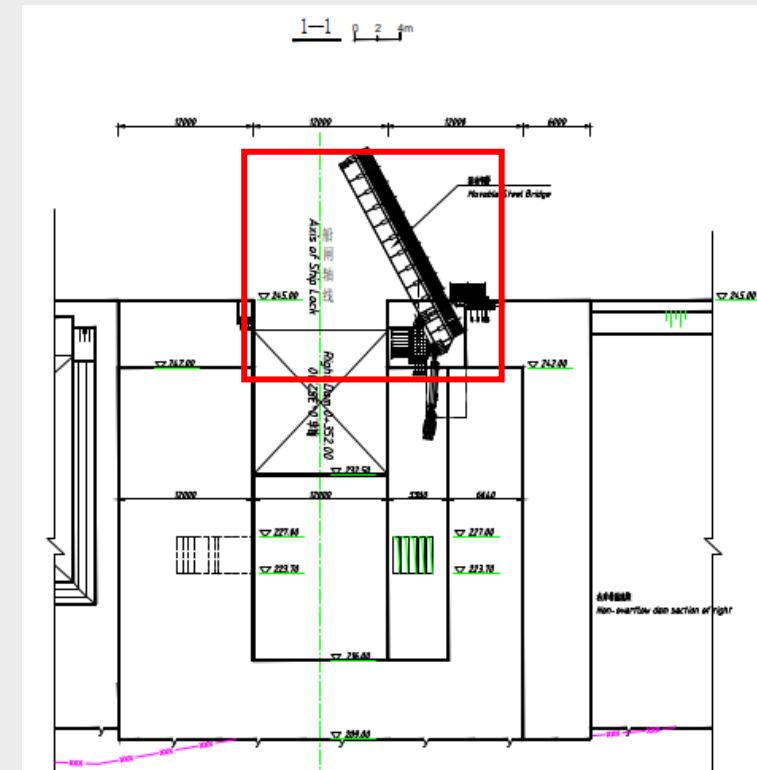
### Release and flushing sluice :


1. The updated design increase the number of Deep Crest Spillway Outlets from 3 to 5 outlets
2. The bottom outlet dam section was kept as the same design

To increase the capacity for sediment management and release

# Updated Key Feature – Navigation Lock

## FS-Design


### Overhead Clearance: Upper lockhead



FS: Only 8.00 m in air clearance between the upper lockhead and low bridge deck level.

## Updated Design

### Overhead Clearance: Upper lockhead



Basic Design: Update design to open bridge

## Key update

Update design to open bridge

Meet PDG 2023.

# Updated Key Feature – Navigation Lock

# Updated Key Feature – Hydrology

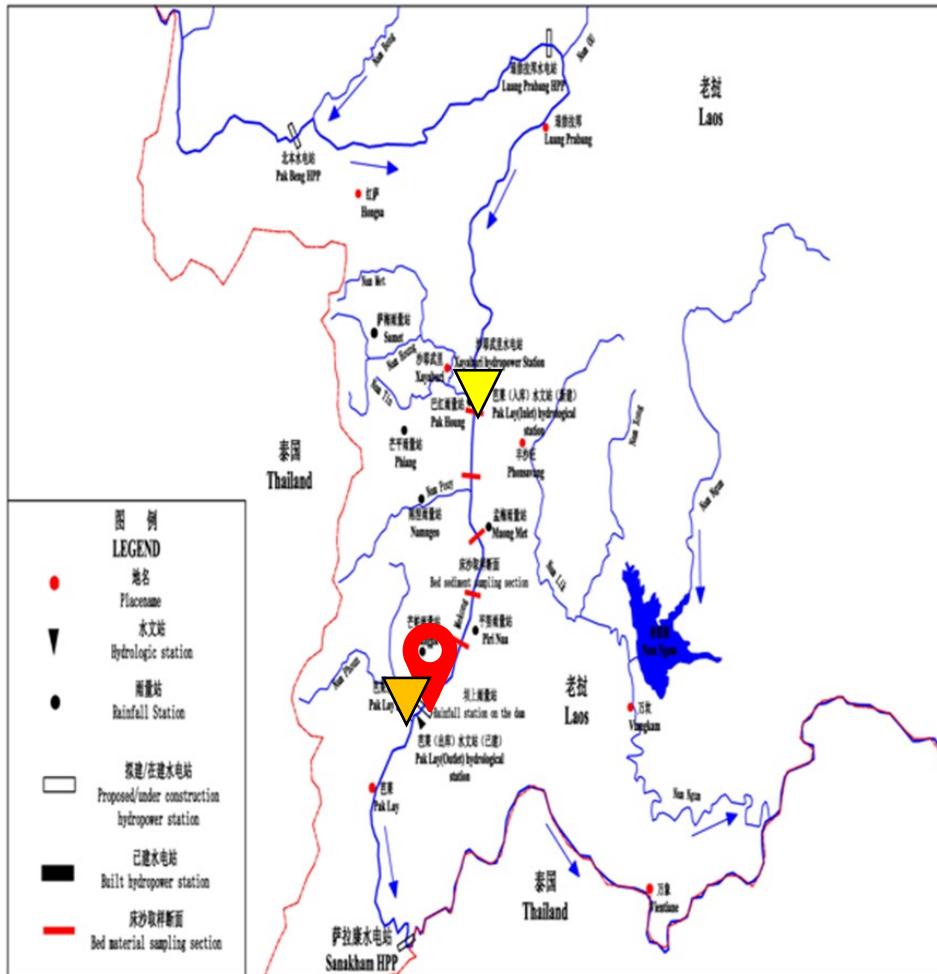


| FS-Design                                                                                                                                                                                        | Updated Design                                                                                                                                                                                            | Key update                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <p><b>1. Duration</b></p> <p>Hydrological data, discharges and water levels used:</p> <p>- Historic flows and water levels of Luang Prabang (1960-2015) and Chiang Khan (196-2015) stations.</p> | <p><b>1. Duration</b></p> <p>Hydrological data, discharges and water levels used:</p> <p>- The historical flows and water level data have been updated to the latest available information year 2022.</p> | Final updated hydrology data for further detailed design will be according to data in 2022. |

# 3. Addressing JAP Recommendation

## 1. Addressing the impacts of the changed hydrology by:

| Issue                                                                                                                                                                                                                                                                                                      | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>a. Introducing the operating rules curve to accommodate requirements of flow management as required by Article 6 of the 1995 Mekong Agreement, and which provides for aligning with the Xayaburi HPP, and other potential mainstream HPPs to improve sediment flushing and downstream larval drift.</p> | <p><b><u>Sediment Monitoring &amp; Flushing</u></b></p> <ul style="list-style-type: none"> <li>Updated sediment monitoring and flushing plan in Basic Design Report.</li> <li>By Considering the sediment deposition in reservoir area up to Xayaburi.</li> <li><b>Plan to install sediment gauging station up/down stream.</b></li> <li>Continuous monitoring to improve the efficiency of sediment management system.</li> </ul> <p><b><u>Downstream Larval Drift</u></b></p> <ul style="list-style-type: none"> <li>Set up flap gate in deep surface outlet of flood discharge.</li> <li>Overshot the flow through the gate when the flow is low to meet requirement of larval drift.</li> </ul> |


## 1. Addressing the impacts of the changed hydrology by:

| Issue                                                                                                                                    | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>b. Ensuring environmental flows for the area immediately downstream of the dam site, if hydropowering operations are implemented.</p> | <ul style="list-style-type: none"> <li>Run-of-river type principle is flow-in would be equal to flow-out</li> <li>The environmental flow (447.21 m<sup>3</sup>/s) has been studied and approved by Department of Water Resources, GOL</li> <li>The Concession Agreement of Pak Lay project has already specified that <ul style="list-style-type: none"> <li>"The Full Supply Level during operation of the HPP shall be at 240+/-0.5 meters above MSL"</li> <li>"The operation of an upstream project should strictly comply with the MRC's guidelines so as not to change the downstream tailwater level by more or less than fifty (50) centimeters within any twenty-four (24) hour period".</li> </ul> </li> </ul> |

# 1. Addressing the impacts of the changed hydrology

## Flow Management and Sediment Monitoring:

Monitor the change in hydrology.



| No. | Type of Station                    | Qty of Station | Observation Item                                                                                                         | Station situation      | Station position                                                                                                                                                                                                                                   |
|-----|------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Pak Lay inflow hydrologic station  | 1              | Water level, discharge, rainfall and sediment (online monitoring of suspended load, bed load and sediment concentration) | New, permanent         | The downstream flow of the Sayaburi Hydropower Project is smooth, and it is not affected by the backwater of the Pak Lay Hydropower Project as much as possible.                                                                                   |
|     | Pak Lay outflow hydrologic station | 1              | Water level, discharge, rainfall and sediment (online monitoring of suspended load, bed load and sediment concentration) | built, permanent       | 1,250m downstream of dam site                                                                                                                                                                                                                      |
|     | Rainfall station                   | 8              | Rainfall                                                                                                                 | New, permanent         | The basin between dam of the Sayaburi Hydropower Project and dam site of the Pak Lay Hydropower Project                                                                                                                                            |
|     | Sampling section of bed sediment   | 6              | Sampling and particle grading of bed sediment                                                                            | Fixed sampling section | In the reservoir area of the Pak Lay Hydropower Project, six sampling sections of Bed material are uniformly arranged along the main river channel, and one sampling point of Bed material is taken at the left, middle and right of each section. |

# 1. Addressing the impacts of the changed hydrology

## Construct Hydrology and Sediment Monitoring Stations

Routinely collect water sample to analyze hydrology.



Water Quality Test

30  
Hydrology

2  
Sediment

3  
Fish Pass Design

4  
Tb socio-economic

Hydrology Monitoring

5  
Dam Safety

6  
Navigation Facility

7  
Communication

8  
Potential Impact

9  
Monitoring

10  
Information Sharing

## 2. Increasing the transport of sediment through the head pond by considering:

| Issue                                                                                                                                                                      | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>a. Optimizing sediment-related design to improve the sediment delivery efficiency of the PLHPP, including effective flushing gates and mechanical delivery methods.</p> | <ul style="list-style-type: none"> <li>Set up flood discharge deep surface outlet and flushing bottom outlet.</li> <li>Sediment monitoring to be enhanced during construction and operation period.</li> <li>Optimize flushing management based on monitoring data.</li> <li>Current design for sediment flushing system are 5 low level spillways size 15 x 26 meters, 2 bottom outlets size 10 x 10 meters</li> <li>Spillways will be operated to release the flow including depositing sediment when river flow is more than 6,100 cu.m/sec</li> <li>Plan to monitor the sediment continuously to improve the sediment management system</li> </ul> |

# Addressing JAP Recommendation : Pak Lay Response 6<sup>th</sup> Oct 2023



## 2. Increasing the transport of sediment through the head pond by considering:

| Issue                                                                                                                                     | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>b. Considering measures to minimize and mitigate the potential impacts of sediment deposition in the head pond/in-channel storage.</p> | <ul style="list-style-type: none"> <li>Consider for up/down stream sediment monitoring station</li> <li>Consider sediment behavior during construction.</li> <li>Manual survey of suspended sediment, bed load, bed material and gradation.</li> <li>A hydrological station had been set up at the dam site to carry out sediment monitoring since 2016.</li> <li>Generate mitigation procedures to be implemented at various operation schemes.</li> </ul> |
| <p>c. Reviewing the sediment management strategy to pass sediment more frequently, such as on a seasonal or annual basis.</p>             | <p>Propose sediment dispatching mode and management measure</p> <p><b><u>1. Inflow &gt; 16,700m<sup>3</sup> /s (During flood season)</u></b></p> <ul style="list-style-type: none"> <li>Flood releasing facilities shall be opened cascade by cascade until all of them are opened fully.</li> </ul> <p><b>Note:</b> The water level of riverway under natural conditions shall be realized as much as possible, to facilitate reservoir scouring.</p>      |

## 2. Increasing the transport of sediment through the head pond by considering:

| Issue                                                                                                                                 | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>c. Reviewing the sediment management strategy to pass sediment more frequently, such as on a seasonal or annual basis. (Cont')</p> | <p><b>2. Large Sediment Concentration and Discharge</b></p> <ul style="list-style-type: none"> <li>• <math>6100 \text{ m}^3/\text{s} &lt; \text{inflow} &lt; 16,700 \text{ m}^3/\text{s}</math></li> <li>• Sediment can be discharged by opening the sluice gate or lowering the reservoir water level as appropriate.</li> </ul> <p><b>3. Discharge Coarse Bed Material Deposited in Reservoir</b></p> <ul style="list-style-type: none"> <li>• The reservoir water level be lowered to the lowest level for ecologically friendly sediment scouring every 2~5 years</li> <li>• The specific frequency can be determined as per the monitoring results of hydrology and sediment.</li> <li>• The sediment discharge should synchronize with the up/downstream cascade HPPs.</li> </ul> |

## 2. Increasing the transport of sediment through the head pond by considering:

| Issue                                                                                                                                 | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>c. Reviewing the sediment management strategy to pass sediment more frequently, such as on a seasonal or annual basis. (Cont')</p> | <p><b>4. Sediment Releasing Bottom Outlet</b></p> <ul style="list-style-type: none"> <li>Irregular opening/closing operations as appropriate.</li> <li>To prevent direct deposit of sediments behind the gate of such outlet, posing threats to the stability of structure.</li> </ul> <p><b>5. Effect of Scouring and Discharge on Unfavorable Area</b></p> <ul style="list-style-type: none"> <li>The sediment in unfavorable area can be removed through sand basin and mechanical dredging.</li> </ul> <p><b>6. Concerning Inflow and Sediment Operation</b></p> <ul style="list-style-type: none"> <li>Carry out observation and monitoring</li> <li>Tests on water and sediment in and out from the reservoir</li> <li>Observation on fixed sections, water level, sampling on sedimentation in the reservoir area.</li> <li>Tests on grain gradation</li> </ul> |

| 30<br>Hydrology | 2<br>Sediment | 3.<br>Fish Pass Design | 4.<br>Tb socio-economic | 5.<br>Dam Safety | 6<br>Navigation Facility | 7.<br>Communication | 8.<br>Potential Impact | 9.<br>Monitoring | 10.<br>Information Sharing |
|-----------------|---------------|------------------------|-------------------------|------------------|--------------------------|---------------------|------------------------|------------------|----------------------------|
|-----------------|---------------|------------------------|-------------------------|------------------|--------------------------|---------------------|------------------------|------------------|----------------------------|

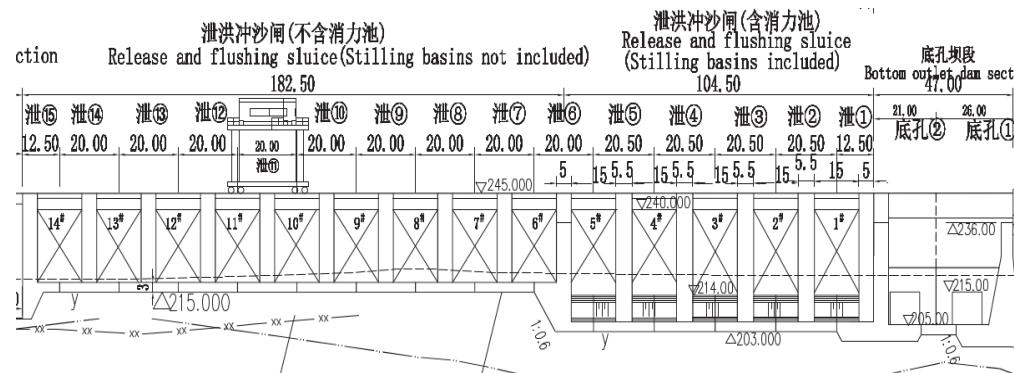
## 2. Increasing the transport of sediment through the head pond by considering:

| Issue                                                                                                                                 | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>c. Reviewing the sediment management strategy to pass sediment more frequently, such as on a seasonal or annual basis. (Cont')</p> | <p><b><u>7. Data Collection</u></b></p> <ul style="list-style-type: none"> <li>Regular data collection</li> <li>Analyze in combination with the operation and dispatching features of the reservoir</li> <li>Sediment dispatching mode of reservoir shall be optimized and adjusted as per the analysis results.</li> </ul> <p><b><u>8. Sediment Scouring, Concentration Outflow Control</u></b></p> <ul style="list-style-type: none"> <li>To prevent adverse impact on the ecology at the downstream</li> <li>The maximum allowable downstream sediment concentration shall be proposed to serve as the controlling index for ecological regulation.</li> </ul> |

# Addressing JAP Recommendation : Pak Lay Response 6<sup>th</sup> Oct 2023



## 2. Increasing the transport of sediment through the head pond by considering:


| Issue                                                                                                                                                       | Pak Lay Response                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d. Coordinating water management and sediment management operations at the PLHPP with other hydropower projects of the cascade to minimize adverse impacts. | GOL will coordinate with other hydropower projects for: <ul style="list-style-type: none"><li>• Information sharing of watershed</li><li>• Dispatch mechanism</li></ul> |

## 2. Increasing the transport of the sediment through the head pond

## Sediment management strategy

## Optimizing sediment-related design to improve the sediment delivery efficiency.

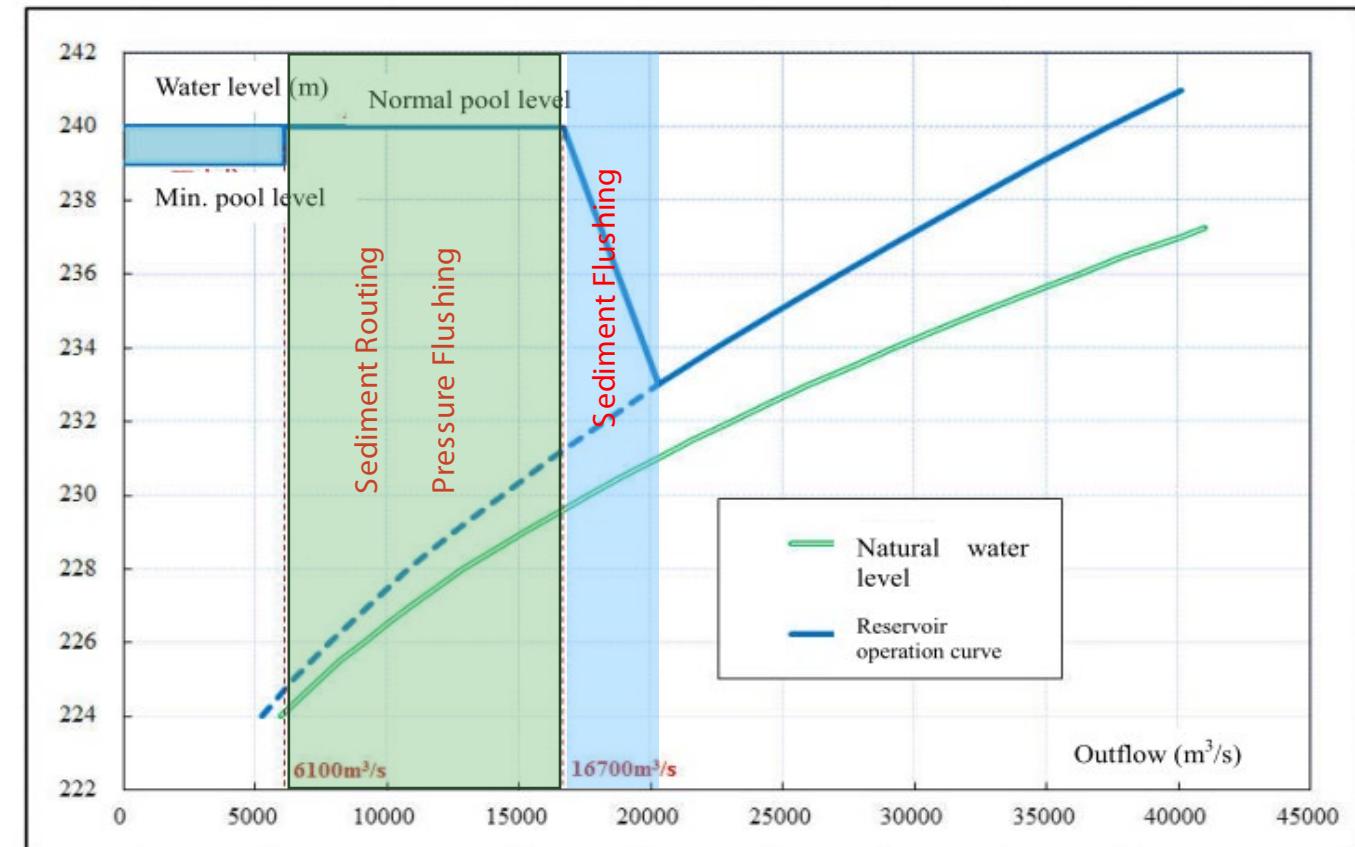
## 1. Design increase deep crest spillway outlet to 5.



|                                |                                  |                     |
|--------------------------------|----------------------------------|---------------------|
| Shallow Crest Spillway Outlets | Dimension (W x H, Outlet Number) | 15 m x 22 m, 9 unit |
|                                | Total Outlet Area                | 2970 m <sup>2</sup> |
| Deep Crest Spillway Outlets    | Dimension (W x H, Outlet Number) | 15 m x 26 m, 5 unit |
|                                | Total Outlet Area                | 1950 m <sup>2</sup> |

## 2. Increasing the transport of the sediment through the head pond

Sediment management strategy



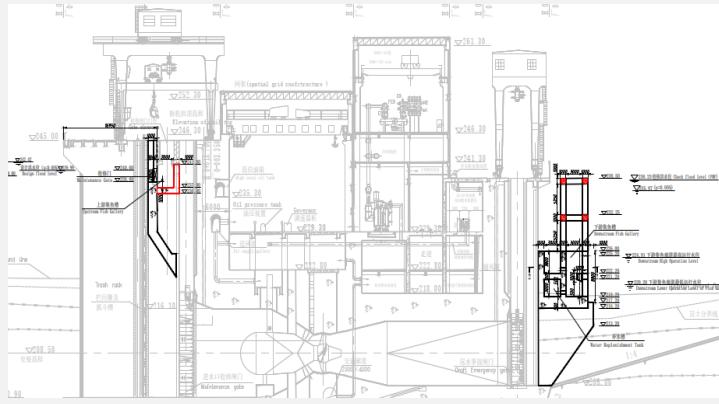

Generate mitigation procedures to be implemented at various operation schemes.

### 2. Mitigation Procedure

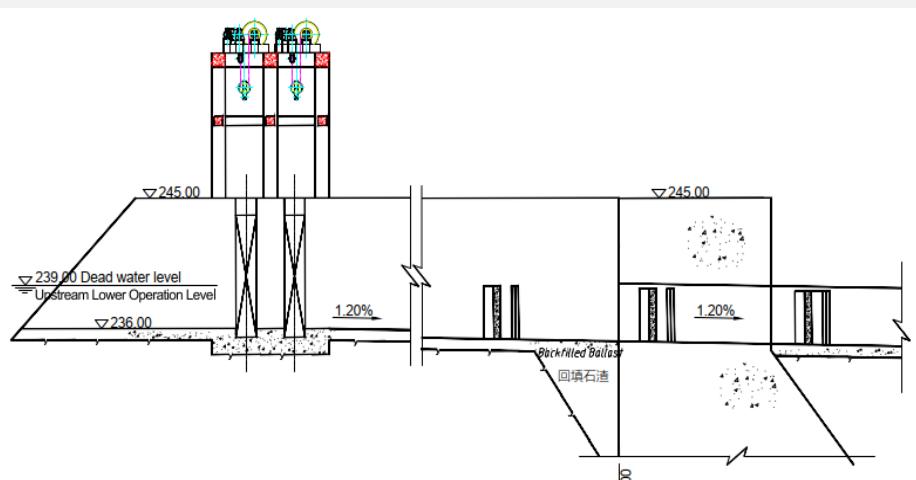
#### Mitigation Procedure

- Sediment Routing
- Pressure Flushing
- Sediment Flushing
- Dredging (Mechanical)




### 3. Improving the fish passage facilities by:

| Issue                                                                                                                                                                                                                                                                                              | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>a. Examining the design and effectiveness of the fish pass facilities at the Xayaburi HPP when designing and constructing the fish pass for the PLHPP.</p>                                                                                                                                      | <ul style="list-style-type: none"> <li>• Compare with fish pass facilities design of Xayaburi HPP and engage consultant to support to optimize the design before constructing the fish pass facilities of PLHPP.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <p>b. Demonstrating the most effective designs in terms of entrances and exits, slope of the fish pass, flow velocity and capacity of fishpass, drifting fish egg and larvae and operation of spillway gates and turbines and installing fish screens to divert larger fish from the turbines.</p> | <ul style="list-style-type: none"> <li>• Plan to engage the fish experts who have experience and familiar with Hydropower Projects located in Mekong River.</li> <li>• <u>Mathematical model tests</u> will be carried out to further optimize the inlet and outlet locations, flow field, velocity, flow and other indicators, and proper monomer physical models</li> <li>• <u>The route of fish</u> through the bulb tubular unit is short and straight, which is very friendly to the passing fish.</li> <li>• <u>A trash rack</u> at the water inlet of the powerhouse, which can effectively prevent large fish from entering the turbine.</li> </ul> |


### 3. Improving the fish passage facilities

Examining the design and effectiveness of the fish pass

Ensure the optimum of fish pass design by fish expert.



The Layout Structure of the Powerhouse Fish Passing Facilities



Layout of Fishway Structure



#### Current Design: Vertical Slot Fish Pass

Key recommendation to improve performance:

- The upstream fish passage facilities
  - Reconfigure the downstream end to bring the entrance to the fish pass closer to the powerhouse tailrace.
  - Modify the collection gallery outlets.
- The downstream fish passage facilities
  - Reconfigure a number of deeper elevation inlets to increase opportunity for passage of midwater and benthic fish species.
  - Refigure the bottom end of the downstream fish pass to reduce the velocity at which fish enter the downstream river channel.
  - Reconfigure the fish pass at the upstream end to bring the exit nearer to the dam.

#### Alternative Design: Fish Lift-Lock

Vertical Slot Fish Pass

- Xayaburi fish pass provides high passage efficiency for a wide range of fish species.
- Requires verification and proven record on effectiveness of Xayaburi fish pass facilities.

## 4. Gaining a better understanding of potential transboundary socioeconomic impacts by:

| Issue                                                                                                                                                                                                        | Pak Lay Response                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considering the results from the socio-economic impact assessment of the related MRC studies and undertaking further assessment if needed on the consequences of the PLHPP on livelihoods and food security. | <ul style="list-style-type: none"><li>• Plan to include the results from the socio-economic impact assessment related to MRC studies in updated TBESIA report.</li></ul> |

# 4. Gaining a better understanding of potential transboundary socio-economic impact

Assessment on the consequences of the PLHPP on livelihoods and food security



PLPC has a strong commitment with help from world-class experts to assess the socio-economic impact.

ESIA 2024



## Collaboration MRC x Project Developers

### PLPC Statement:

*"To establish the commitment for CIA mitigation collaboration with the MRC, Mekong River Basin governments, and other hydropower project operators to share information and work together to resolve cumulative impacts."*

Fish

- Share lesson learn
- Fish migration data
- Efficiency of fish pass

Livelihood and Food Security

- Conduct survey and gather the result from the MRC study.
- Improve Livelihood restoration plan (LRP)
- Share the result from ESIA study
- Gather experience from other project developers and share lesson learn form Pak Lay project.

|              |               |                       |                        |                 |                           |                     |                        |                  |                            |
|--------------|---------------|-----------------------|------------------------|-----------------|---------------------------|---------------------|------------------------|------------------|----------------------------|
| 30<br>Hydrog | 2<br>Sediment | 3<br>Fish Pass Design | 4<br>Tb socio-economic | 5.<br>DamSafety | 6.<br>Navigation Facility | 7.<br>Communication | 8.<br>Potential Impact | 9.<br>Monitoring | 10.<br>Information Sharing |
|--------------|---------------|-----------------------|------------------------|-----------------|---------------------------|---------------------|------------------------|------------------|----------------------------|

## 5. Improving the design of the dam safety features by:

| Issue                                                                                                                                                                                                                                 | Pak Lay Response                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>a. Undertaking a dam break analysis including possible failures, at the start of the detailed design stage to identify any weaknesses in the design and allow mitigation measures to be incorporated at an early design stage.</p> | <ul style="list-style-type: none"> <li>• Already engaged the consultant to perform Dam Break Analysis</li> <li>• To get approval by GOL following the Dam Safety Guideline of Lao PDR and International Standard such as ICOLD.</li> </ul>    |
| <p>b. Carrying out dam break modelling to determine the consequences of the theoretical dam break flood wave, and to select the design standards accordingly.</p>                                                                     | <ul style="list-style-type: none"> <li>• Already engaged the consultant to perform Emergency Action Plan</li> <li>• To get approval by GOL following the Dam Safety Guideline of Lao PDR and International Standard such as ICOLD.</li> </ul> |

## 5. Improving the design of dam safety features

Carrying out dam break modelling to determine the consequences of the theoretical dam break flood wave



### Enhance understanding of the downstream affect caused by dam break.

- ✓ Perform various scenario analysis taking into account the existing of Xayaburi and Sanakham at different modes.
- ✓ Forecast the downstream affected area when a dam failure occurs.
- ✓ Conduct the assessment as per LEPTS 2018.
- ✓ Dam Break Analysis and Emergency Action Plan reviewed and approved by GoL.

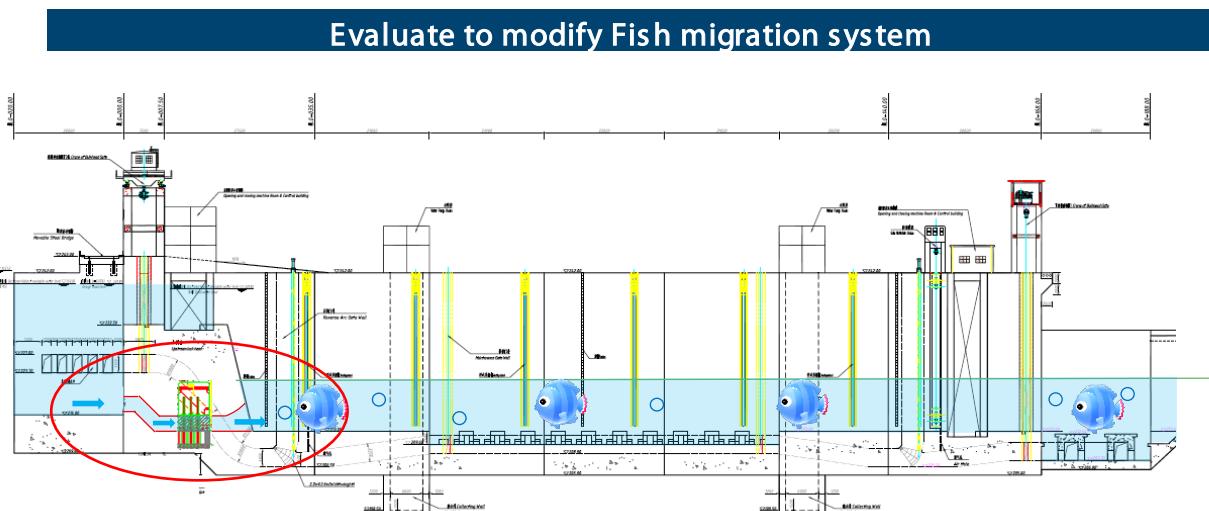
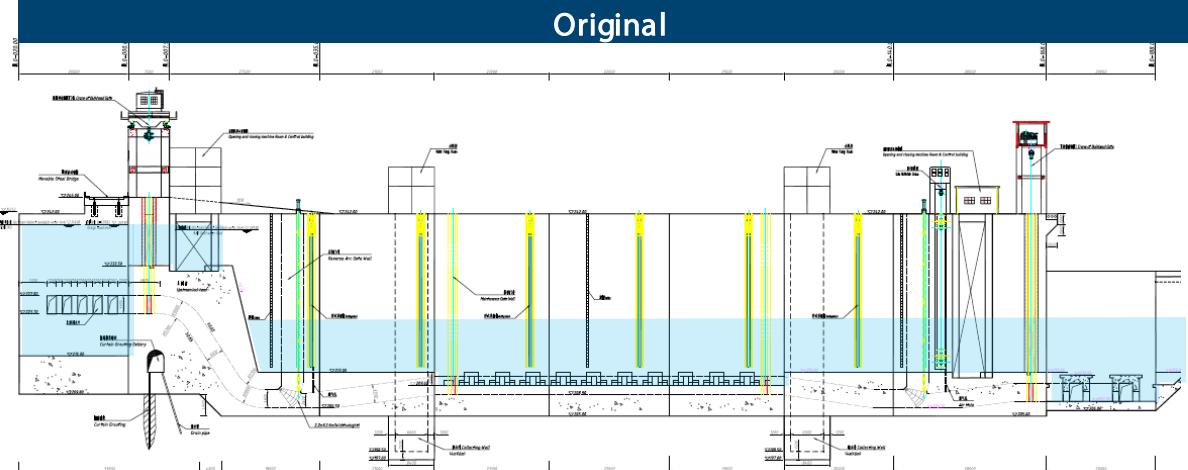
# Addressing JAP Recommendation : Pak Lay Response 6<sup>th</sup> Oct 2023



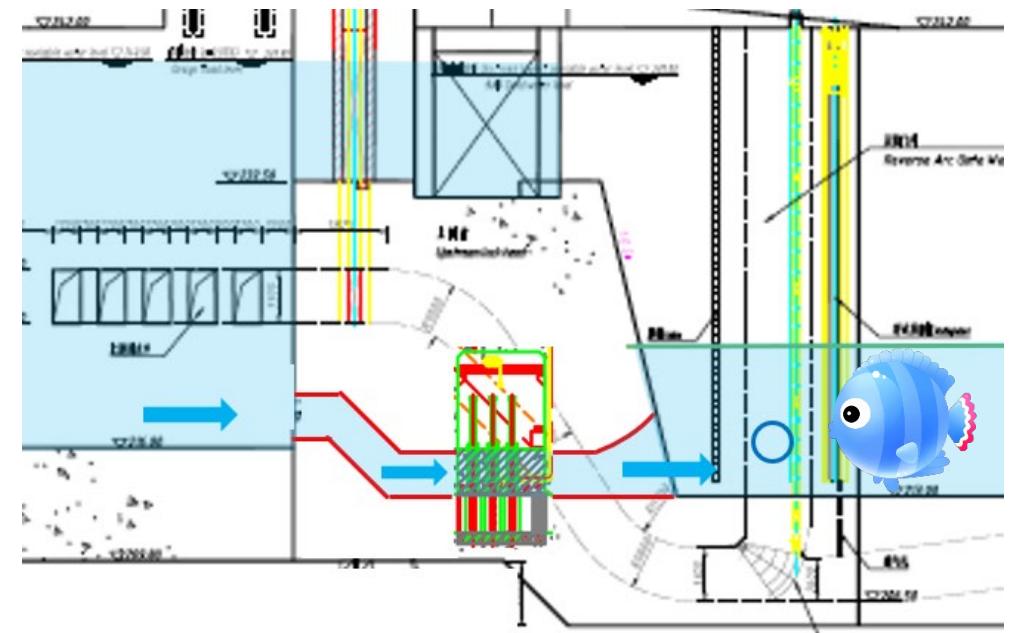
## 6. Increasing the safety of the navigation facilities by:

| Issue                                                                                                                           | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Increasing the air clearance over the upper lockhead to align with the standard practice on the Mekong.                      | <ul style="list-style-type: none"> <li>The design has been revised as required and updated in the Basic Design Report 2022.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                              |
| b. Providing a vertical front for the downstream guidance wall, as is the case with the upstream guidance wall.                 | <ul style="list-style-type: none"> <li>The design has been revised as required and updated in the Basic Design Report 2022.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                              |
| c. Improving the safety of the upstream and downstream approaches to the lock system by considering appropriate design changes. | <ul style="list-style-type: none"> <li>The calculation results show that the overall stability of the upper and lower approach channel pier and navigation wall meet the requirements</li> <li>The relevant design parameters of the upper and lower approach channel of the lock meet the relevant provisions of the Mekong River Commission's guidelines.</li> <li>The research results show that the flow conditions of the upstream and downstream approach channels meet the requirements of ship navigation safety</li> </ul> |

| 30<br>Hydrology | 2<br>Sediment | 3<br>Fish Pass Design | 4<br>Tb socio-economic | 5<br>Dam Safety | 6<br>Navigation Facility | 7.<br>Communication | 8<br>Potential Impact | 9<br>Monitoring | 10<br>Information Sharing |
|-----------------|---------------|-----------------------|------------------------|-----------------|--------------------------|---------------------|-----------------------|-----------------|---------------------------|
|-----------------|---------------|-----------------------|------------------------|-----------------|--------------------------|---------------------|-----------------------|-----------------|---------------------------|



## 6. Increasing the safety of the navigation facilities by:

| Issue                                                                                                                      | Pak Lay Response                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d. Using the lock system to facilitate fish migration during construction, drawing upon the Xayaburi system as an example. | <ul style="list-style-type: none"> <li>• To optimize the design based on the advice of fish experts.</li> <li>• To engage the consultant to conduct fish monitoring and work together with GOL and MRC during construction period.</li> </ul> |


# 6. Increasing the safety of the navigation facilities

Using the lock system to facilitate fish migration during construction

Additional flow to attract fish migration through the lock system during construction.



Under assessment to modify the lock system to facilitate fish migration during construction, drawing upon the Xayaburi system as an example.



# Addressing JAP Recommendation : Pak Lay Response 6<sup>th</sup> Oct 2023



7. Maintaining a communication channel to get inputs into the ongoing design and development of the PLHPP together with MRC's support, including at a minimum the following expertise:

| Issue              | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Dam safety      | <p>Acknowledged</p> <ul style="list-style-type: none"> <li>Design criteria of Pak Lay Project is following LEPTS 2018, Dam Safety Guideline, Lao PDR, International Standard.</li> <li>Basic design standards of the Pak Lay project follow LEPTS 2018 and Chinese standards.</li> <li>Basic design criteria and basic design report have been approved by GOL engineers.</li> </ul> |
| b. Flow regulation | <p>Acknowledged</p> <ul style="list-style-type: none"> <li>The historical hydrological and hydraulic data for 60 years period have been considered for the effect of <ul style="list-style-type: none"> <li>Upstream projects' operating</li> <li>Climate change</li> <li>Drought events</li> </ul> </li> </ul> <p>For project risk during the concession period</p>                 |

| 30<br>Hydrology | 2<br>Sediment | 3<br>Fish Pass Design | 4<br>Tbsocio-economic | 5.<br>Dam Safety | 6<br>Navigation Facility | 7.<br>Communication | 8<br>Potential Impact | 9<br>Monitoring | 10<br>Information Sharing |
|-----------------|---------------|-----------------------|-----------------------|------------------|--------------------------|---------------------|-----------------------|-----------------|---------------------------|
|-----------------|---------------|-----------------------|-----------------------|------------------|--------------------------|---------------------|-----------------------|-----------------|---------------------------|

# Addressing JAP Recommendation : Pak Lay Response 6<sup>th</sup> Oct 2023



7. Maintaining a communication channel to get inputs into the ongoing design and development of the PLHPP together with MRC's support, including at a minimum the following expertise:

| Issue                               | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c. Sediment flushing infrastructure | <p>Acknowledged</p> <ul style="list-style-type: none"> <li><u>The current design</u> for sediment flushing system are 5 low level spillways size 15 x 26 meters, 2 bottom outlets size 10 x 10 meters</li> <li><u>The operating scheme</u>, the spillways will be operated to release the flow including depositing sediment when river flow is more than 6,100 cu.m/sec</li> </ul> |
| d. Fish passage infrastructure      | <p>Acknowledged</p> <ul style="list-style-type: none"> <li>Optimize the design based on the advice of fish experts hired by the PLPC.</li> </ul>                                                                                                                                                                                                                                    |
| e. Navigation lock infrastructure   | <p>Acknowledged</p> <ul style="list-style-type: none"> <li>Model tests of lock water delivery were carried out during the feasibility study period. The design follows MRC guidelines.</li> </ul>                                                                                                                                                                                   |
| f. Socio-economic assessment        | <p>Acknowledged</p> <ul style="list-style-type: none"> <li>The assessment results can be referred to approved ESIA by MONRE in 2020 and completed the updating of the report in 2023.</li> </ul>                                                                                                                                                                                    |

## 7. Maintaining a communication channel to get inputs into the ongoing design and development of the PLHPP together with MRC's support

Keep MRC informed with the key progress. Open for recommendation by MRC experts.

| Issue                              | Progress Update from Previous Meeting                                                                   |
|------------------------------------|---------------------------------------------------------------------------------------------------------|
| • Dam Safety                       | • Approved by MEM (Feb 2024).                                                                           |
| • Flow Regulation                  | • Request to extend the permission of minimum water flow (Mar 2024).<br>• Wait for approval from MONRE. |
| • Sediment Flushing Infrastructure | • Submitted sediment management plan to EGAT.<br>• Review comments from EGAT.                           |
| • Fish Passage Infrastructure      | • Fishtek recommends modification to the current design.<br>• Under evaluation by PLPC.                 |
| • Navigation Lock Infrastructure   | • Assess to modify lock system to enable fish migration during construction.                            |
| • Socio Economic Assessment        | • Submitted updated ESIA report (2023) to MONRE for review.<br>• Wait for approval.                     |

## 8. Gaining a better understanding of potential impacts by :

| Issue                                                                                                                                                                                                                                             | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>a. Collecting additional data to better support local and transboundary impacts assessment and identification of appropriate mitigation measures.</p>                                                                                          | <ul style="list-style-type: none"> <li>Project has collected related additional data such as <ul style="list-style-type: none"> <li>Socio-economic</li> <li>Surface water quality,</li> <li>Fish,</li> <li>Etc.</li> </ul> </li> </ul> <p>Already included in the updated ESIA report.</p>                                                                                                                                                                                                                                                                                      |
| <p>b. Taking into account the impact assessments at both local and transboundary levels including changes in flow regimes, sediment transport, fisheries, water quality, and ecological health as recommended by the Technical Review Report.</p> | <ul style="list-style-type: none"> <li>The trans boundary impact has been considered and assessed at both local and transboundary levels including <ul style="list-style-type: none"> <li>Changes in flow regimes</li> <li>Sediment transport</li> <li>Fisheries</li> <li>Water quality</li> <li>Ecological health</li> </ul> </li> </ul> <p>as recommended by the Technical Review Report</p> <ul style="list-style-type: none"> <li>The TBESIA as a sub-report of ESIA reports has been approved by MONRE in 2020</li> <li>Updated in 2023. Under review by MONRE.</li> </ul> |

| 30<br>Hydrology | 2<br>Sediment | 3<br>Fish Pass Design | 4<br>Tbsocio-economic | 5.<br>Dam Safety | 6<br>Navigation Facility | 7.<br>Communication | 8<br>Potential Impact | 9.<br>Monitoring | 10.<br>Information Sharing |
|-----------------|---------------|-----------------------|-----------------------|------------------|--------------------------|---------------------|-----------------------|------------------|----------------------------|
|-----------------|---------------|-----------------------|-----------------------|------------------|--------------------------|---------------------|-----------------------|------------------|----------------------------|

## 8. Gaining a better understanding of potential transboundary socioeconomic impacts by:

| Issue                                                                                                                                                                                                            | Pak Lay Response                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>c. Cooperating with MRC Secretariat to consider the impacts of the PLHPP in the context of cumulative impacts of other existing and planned mainstream dams including the dams in the Upper Mekong River.</p> | <ul style="list-style-type: none"> <li>• The CIA as a sub-report of ESIA reports has been approved by MONRE in 2020. Updated in 2023 and under review by MONRE.</li> <li>• PLPC will cooperate with MRC to assess and study further potential cumulative impact</li> <li>• And work together with other existing and planned mainstream dams</li> <li>• To use effective measures to reduce the impact and risk.</li> </ul> |

## 8. Gaining a better understanding of the potential impact of PLHPP



Maintain two-way communication between PLPC and MRC, as a focal point, to get a holistic view of all hydropower projects in the mainstream.



### PLPC Statement:

*"To establish the commitment for CIA mitigation collaboration with the MRC, Mekong River Basin governments, and other hydropower project operators to share information and work together to resolve cumulative impacts".*

## 9. Monitoring:

| Issue                                                                                                                                                                                                                                                   | Pak Lay Response                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>Expanding the MRC Joint Environment Monitoring of the mainstream development projects to cover the impacts assessment of the PLHPP on the hydrology, sediment, water quality, aquatic ecology and fisheries in construction and operation stages</p> | <ul style="list-style-type: none"> <li>Once MRC Joint Environment Monitoring has initiated, project will review and cooperate with the program under appropriate condition.</li> <li>PLPC will engage the consultant of different majors to support to conduct the monitoring work during construction period and operation period.</li> </ul> |

## 10. Information Sharing:

| Issue                                                                                                                           | Pak Lay Response                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Periodically share the monitoring data, the updated detailed design and operating rules with the MRC for comment and reference. | <ul style="list-style-type: none"> <li>• PLPC will keep close cooperation with MRC and LNMC to enhance communication and information sharing.</li> <li>• Periodically monitoring data and special information as requested will be shared on PLPC website.</li> </ul> |

# 9. Monitoring & 10. Information Sharing

Share monitoring result with MRC.

**“Accountability” and “Openness” are the key to collaboration.**



- Once MRC Joint Environment Monitoring of the mainstream development projects is initiated, PLPC will cooperate in all required area; the impacts assessment of the PLHPP on the hydrology, sediment, water quality, aquatic ecology and fisheries in construction and operation stages.
- PLPC commit to periodically share the monitoring data, the updated detailed design and operating rules with the MRC.

# 4. Q&A



An aerial photograph of a large dam and reservoir. The dam is a long, low structure with a grid-like pattern. The reservoir behind it is a large, dark body of water. In the foreground, there are roads and some greenery. The background shows more of the reservoir and some hills.

# Thank You