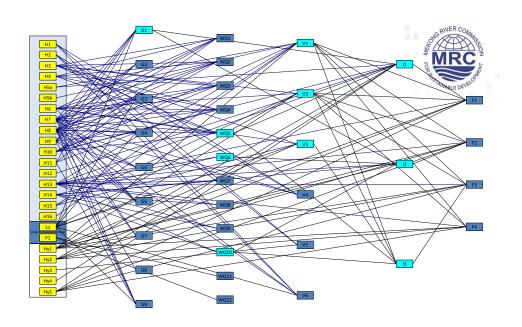
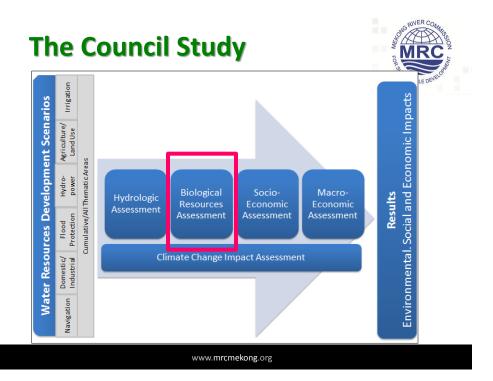


River flow and ecosystem function


- Lowflows:
 - basic seasonal nature of the river;
 - more or less wetted habitat;
 - different hydraulic and chemical conditions.
- Floods:
 - general geomorphological character, shape and size of river channel;
 - inundate floodplains and backwater areas
 - mobilise sediments and deposit silt, nutrients and seeds on floodplains;
 - maintain moisture levels in the banks that support the trees and shrubs;
 - trigger the emergence of adults of aquatic insects, which provide food for fish, frogs and birds;
 - stimulate and provide habitat for spawning in fish
- Flow variability, on a daily, seasonal or annual basis:
 - acts as a form of natural disturbance maintains habitat and biological diversity;
 - dictates the width of the vegetation belt along the water line, which protects the banks against erosion.

Water-resource developments change:


- flow regimes;
- water chemistry;
- sediment and temperature regimes;
- habitats;
- fauna and flora;
- ecosystem services on which people depend.

www.mrcmekong.org

- Overwhelmingly complex if all viewed at once
 SO
- Divide ecosystem into discipline each with a small set of indicators
- Identify what are the main factors affecting change in each indicator (driving linked indicators)
- Focus on each individual relationship
- Use a model to compute permutations

Biological Resources Assessment (BioRA)

Objective of BioRA

To provide clear and comparable information on the impacts of proposed thematic developments on the aquatic resources of mainstem Lower Mekong River, inclusive of the Tonle Sap Great Lake and the Mekong Delta.

www.mrcmekong.org

BioRA Team

BioRA Management:

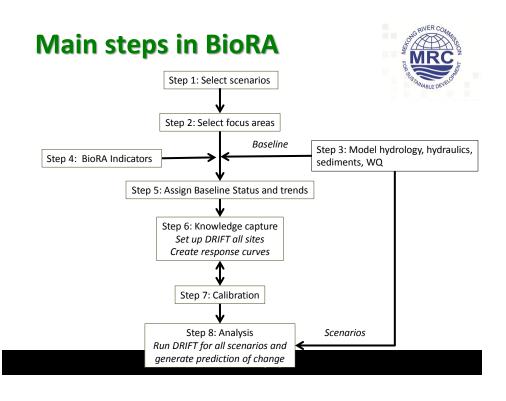
Dr So Nam, Dr Peter Degan, Dr Cate Brown; Dr Alison Joubert

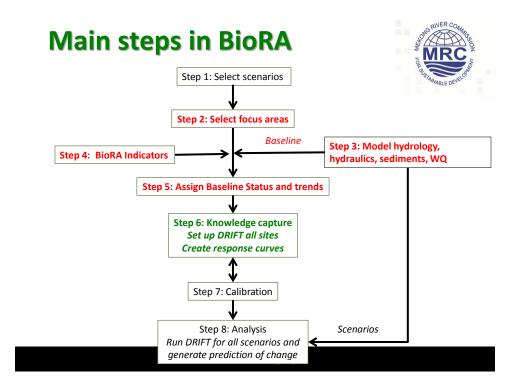
International and Regional Consultants:

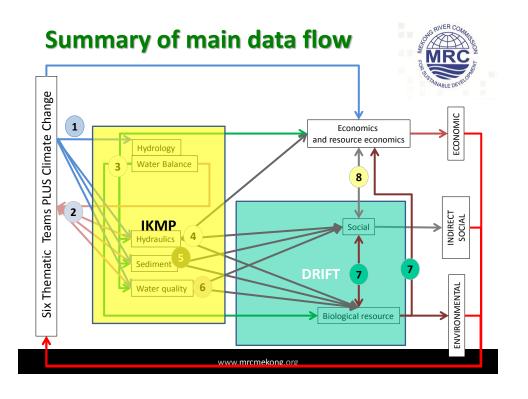
Geomorph/WQ: Dr Lois Koehnken
 Vegetation: Dr Andrew MacDonald

Macrophytes (delta): Dr Nguyen Thi Ngoc AnhAlgae (delta): Ms Duong Thi Hoang Oanh

Invertebrates: Dr Ian Campbell

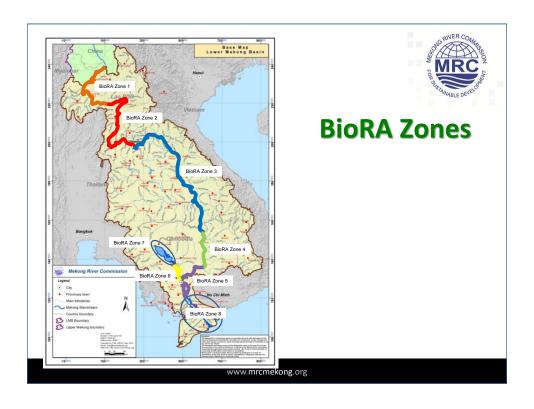

Fish: Dr Ian Cowx, with Dr Kenzo Utsugi (Delta support)

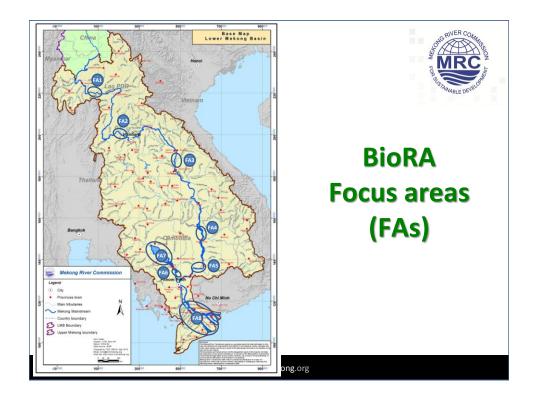

Mammals and birds: Mr Anthony Stones
 Frogs and reptiles: Dr Hoang Minh Duc
 Tonle Sap processes: Dr Dirk Lamberts


National Counterparts:

Next slide

latior	nal Counte	erparts	MF
Country	Name	Discipline	AINABLE
	Geomorphology	Toch Sophon	
Cambodia	Biodiversity, excl. fish	Pich Sereywath	
	Fish	Dr Chea Tharith	
	Geomorphology	Dr Bounheng Soutichak	
	Vegetation	Thananh Khotpathoom	
Laos PDR	Fauna, excl. fish	Dr Phaivanh Phiapalath	
	Fish	Dr Kaviphone Phouthavong	
	Fauna, excl. fish	TBD	
Thailand	Fish	Chaiwut Grudpun	
	Geomorphology	Dr Hoang Thanh Tung	
Viet Nam	Biodiversity, excl. fish	Dr Luu Hong Truong	
	Fish	Vu Vi An	


BioRA Focus Areas


www.mrcmekong.org

Establish nodes

Tier	Criteria	Description
1	International borders	Add node at each international border
2	Hydrological zones	Add node at downstream end of each Hydrological Zone
3	Geomorphological zones	Add node at downstream end of each Geomorphological Zone
4	Tributaries	Add node upstream of each major tributary
5	Conservation hotspots	Add node upstream and downstream of conservation hotspots
6	Mainstem fish migration pathways	Add node in mid-point of fish migratory pathways.
7	Inundation bands	Add node to represent the lowest extent of each inundation band in Tonle Sap Great Lake
8	Salinity	Add nodes at extent of flood and drought salinity intrusion
9	Existing water-resource developments	Add node upstream and downstream of locations of major existing water resource developments, plus navigation and sand mining
10	Planned water-resource developments	Add a node at the upstream limit of major dam infrastructure, mines, towns, agricultural areas, etc.
11	Socio-economic zones	Add node at downstream end of each Socio-economic Zone
12	Rationalisation	 Remove nodes that <10 km (river length) apart. Remove nodes at tributaries unimportant for sediment <u>and</u> fish.

BioRA Indicators

www.mrcmekong.org

Geomorphology indicators

Code	Indicator		
Erosion	Erosion (bank / bed incision)		
FineCoarse	Dry and wet season bed sediment size		
Sandbars	Availability of sandy bars, islands and insets		
Rockreefs	Exposure of rocky reefs		
PDepth	Bedrock pool depth		
Clarity	Water clarity		

Vegetation indicators

Code	Indicator		
CUCover		Extent of upper bank vegetation cover	
CLCover	Channel	Extent of lower bank vegetation cover	
CHerb		Extent of herbaceous marsh vegetation	
CBioRip		Biomass of riparian vegetation	
CBioAlg		Biomass of algae (planktonic and benthic)	
CComm		Community structure and species composition	
FForest		Extent of flooded forest cover	
FHerb		Extent of herbaceous marsh vegetation	
FBio		Biomass of riparian/aquatic cover	
FBioBG	Floodplain	Biomass of cyanobacteria	
FBioAlg		Biomass of algae (planktonic and benthic)	
RipInv		Extent of Invasive riparian plant cover	
Floatinv		Extent of floating and submerged invasive plant cover	

www.mrcmekong.org

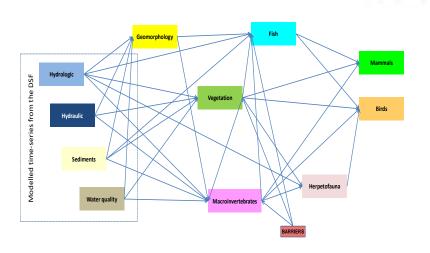
Macroinvertebrate indicators

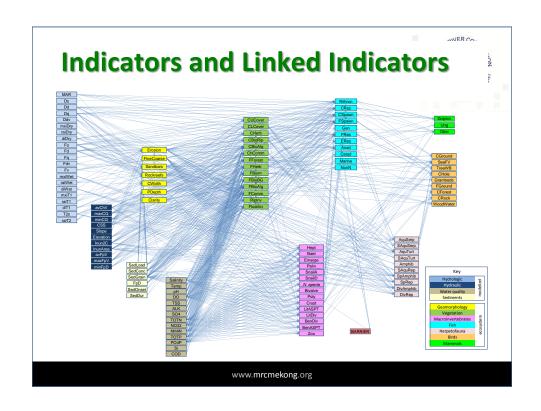
Code	Indicator
Hept	Heptageniid mayflies
Beat	Baetid mayflies
Emerge	Dry season emergence
Palin	Palingeniid mayflies
SnailA	Snail abundance
SnailD	Diversity of snails
N. aperta	Neotricula aperta
Bivalve	Bivalves abundance
Poly	Polychaet worms
Crust	Shrimps and crabs
LitDiv	Littoral diversity
LitASPT	Littoral ATSP
BenDiv	Benthic diversity
BenASPT	Benthic ATSP
Zoo	Zooplankton abundance

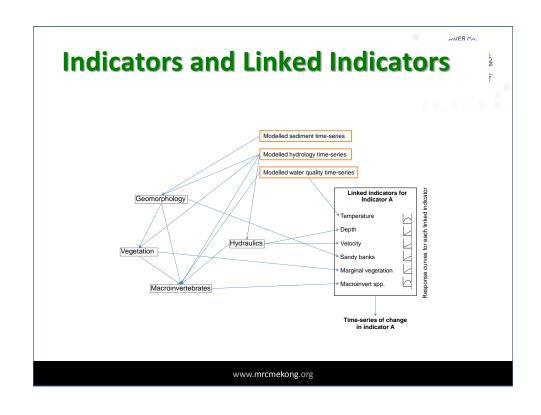
Fish indicators

Code	Indicator		
Rithron	Rithron resident species		
CRes	Main channel resident (long distant white) species		
CSpawn	Main channel spawner (short distance white) species		
FSpawn	Floodplain spawner (grey) species		
Gen	Eurytopic (generalist) species		
FRes	Floodplain resident (black fish)		
ERes	Estuarine resident species		
Anad	Anadromous species		
Catad	Catadromous species		
Marine	Marine visitor species		
NonN	Non-native species		

www.mrcmekong.org


Herpetofauna indicators




No.	Indicator		
AquSerp	Aquatic serpents		
SAquSerp	Semi-aquatic serpents		
AquTur	Aquatic turtles		
SAquTur	Semi-aquatic turtles		
Amphib	Amphibians		
SAquRep	Aquatic/semi-aquatic reptiles		
SpAmphib	Species richness of riparian amphibians		
SpRep	Species richness of riparian reptiles		
DivAmphib	Diversity riparian amphibians		
DivRep	Diversity riparian reptiles		

Bird a	nd m	nammal indicators
No.		Indicator
CGround		Medium / large ground-nesting channel species
SeaFV		Small non-flocking land bird of seasonally flooded vegetation
TreeWB		Tree-nesting large waterbird
CHole		Bank-/hole-nesting species
Grambeds	Birds	Flocking non-aerial passerine of tall graminoid beds
FGround		Large ground-nesting species of floodplain wetlands
CForest		Channel-using large species which require bank side forest
CRock		Natural rocky crevice nester in channels
WoodWater		Dense woody vegetation / water interface
Dolphin		Irrawaddy dolphin
Otter	Mammals	Otters
Ung		Wetland ungulates

Indicators and Linked Indicators

BioRA Status and Trends

www.mrcmekong.org

Status and trends

- 1. impoundments, which reduce sediment delivery and alter the flow regime;
 - 2. sediment mining, which alters channel morphology and induces bank erosion through steepening;
- 3. land cover changes, which alter the quantity of sediment delivered to the river;
- 4. irrigation and other extractions, which alter the flow regime.

A very EDOSION	Status	Abundance as % of 2015			
Area: EROSION	2015	1900	1950	1970	2000
Mekong River in Laos PDR	D	50	50	50	60
Mekong River in Laos PDR/Thailand	D	50	50	60	70
Mekong River in Cambodia	D	50	50	60	70
Tonle Sap River	С	50	50	60	70
Tonle Sap Great Lake	С	50	50	60	70
Mekong Delta	D	50	50	60	70

BioRA Schedule

www.mrcmekong.org

BioRA Schedule

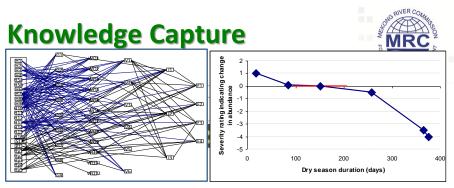
Preparation Meetings: March 2015

Field Visits: March 2015

Status and trends: June 2015

Field Visit 2: July 2015

DSS Set-up – river/TLS: June-July 2015


KCW &Calibration –river/TLS: Sept 2015

KCW – Delta: Sept 2015

Calibration – Delta: November 2015

Specialist Reports: November 2015

Scenario Assessment & Reporting: March/June 2016

- Sequential/staggered drafting of Response Curves
 - 1. Geomorphology
 - 2. Biota
- Iterative
 - Indicators and linked indicators may change
 - Motivations for RC must be provided

www.mrcmekong.org

Calibration

- Run 'calibration' scenarios to assist with calibrating RCs:
 - Naturalised scenario
 - Extreme scenarios
 - Stepped scenarios
 - Development and exogenous scenarios
- Workshop(s) in Vientiane
- One-on-one sessions facilitated by Skype/email

Specialist Reports

- 1. Discipline-specific description of study area
- 2. Indicators:
 - 1. Reasons for selection
 - 2. Description
- 3. Status and trends

4. Response curve evidence-based motivations

The fish need sufficient time prior to the onset of the dry season to accumulate food reserves and energy required for maturing of eggs and spawning (Bell 2006; Bagenal 1969). Breeding is triggered by a drop in water temperature, associated with a drop in flow, and should coincide with the maturation of eggs in the fish (Wootton 1998; Pender and Kwak 2002).

Onset of the dry season before September (week 35) could mean that the triggers for breeding occur before the eggs have sufficiently matured. Breeding success would be compromised if spawning takes place at this time (Balt et al. 1987).

A delayed in the onset of the dry season could result in the fish having mature eggs but missing the temperature cue for breeding (Pender and Kwak 2002). Eggs could perish within the fish and be reabsorbed. Flows in the breeding areas would probably be high and may not be appropriate for construction of redds (eggs would wash away).

www.mrcmekong.org

Scenario Evaluation and Reporting

- Run scenarios through the DRIFT DSS
- · Specialists to review outcomes
- Make adjustments to Response Curves if and where deemed necessary
- Draft the reports:
 - Thematic
 - Cumulative
- Specialists to review and discipline-specific inputs to reports

Role of National Consultants

- Support Lead Consultants:
 - Data
 - Input on Response Curves
 - Motivations
- Ensure understand the process
- Feedback to MCs

www.mrcmekong.org

	RIVER COMMO
DELIVERABLES	Date
Deliverable 1: Progress Report - Preliminary Indicators and Focus Area	Done
Deliverable 2: Progress Report - DSS Set-up	31 July 2015
Deliverable 3: Specialist Reports	November 2015
Deliverable 4: Populated and calibrated DRIFT DSS	November 2015
Deliverable 5: Thematic Scenario Reports	2016
Deliverable 6: Cumulative Scenario Report	2016

Outputs of OSV July Meetings

- Report: DSS Set-up. This will contain, *inter alia*:
 - ☐ Revised BioRA indicator list
 - Links to MRC indicators
 - ☐ Anticipated direction of change in BioRA indicators response to changes in linked indicators
 - ☐ Trends and Status assessments
 - ☐ Layout of DRIFT DSS for BioRA
 - Reference data sets
- Schedule of follow-up activities
- Summary of main issues arising from meetings
- Copies of presentations made at meetings

www.mrcmekong.org

Thank you