ISH0306 - GEOMORPHOLOGY, SEDIMENTS & WATER QUALITY

ISH0306 Final Regional Training Session

Geomorphology, Sediments & Water Quality

Lois Koehnken
Independent Consultant
Introduction to Mitigation

- HPPs have the potential to directly alter flow and sediment movement in river systems
- Rivers will respond to these changes, and these responses may have negative impacts with respect to:
 - The physical integrity of the river
 - The ecology of the river
 - The social uses of the river
- Ideally negative impacts are avoided but this is rarely possible
- When negative impacts cannot be avoided, need to minimise and **mitigate**
Hydropower projects operate for decades to centuries

The Hydropower Project Life Cycle (~100 years)

- Planning and pre-feasibility (~10 years)
- Design, feasibility, impact assessments (~3 years)
- Construction (~7 years)
- Operation (~80 years)

Often major refurbishment after ~50 years

Sometimes change of ownership, and/or relicensing, after some time period

‘Someone's sitting in the shade today because someone planted a tree a long time ago’ Warren Buffet
Mitigation Approach / Strategy

- Understand the river flow, geomorphology & sediments
- Identify values and risks
- Identify appropriate mitigation measures to
 - Avoid, minimise, mitigate
 - Maximise operational flexibility
- Model / trial / consult / revise
- ISH0306 ‘Manual’ follows this sequence
 - Manual contains some LMB site-specific information
 - Description of geomorphology by zones
 - Description of sediment delivery
 - Description of water quality
 - Based on MRCS monitoring programmes
 - Manual identifies some LMB specific ‘risks’
 - Mitigation measures appropriate to the LMB
ISH0306 Mitigation Approach – Geomorphology, Sediments & Water Quality

- **Understanding processes in the LMB**
- The better the understanding of the river system the more appropriate and cost effective the mitigation measures
 1. Need information about site, sub-basin, basin (transboundary)
 2. Channel characteristics – alluvial, bedrock, composite, slope
 3. Sediment sources, sediment loads, sediment characteristics & flow regime, seasonality of sediment delivery
 4. Water quality characteristics – temp, EC, turbidity / light penetration, nutrients

Sediment loads & patterns
Sediment grain-size
WQ characteristics
ISH0306 Mitigation Approach – Geomorph., seds & WQ

• Identifying values & risks-What needs protection?

• Geomorphic & sediment values – examples
 1. Physical: Channel, bank, infrastructure, delta and shoreline stability
 2. Ecological: Provision and maintenance of habitats
 3. Social: Construction materials, tourism, cultural sites

• Water quality values - examples
 1. Human uses: consumption, irrigation, industrial
 2. Maintenance of water quality conditions in river systems & Tonle Sap, e.g. water clarity, nutrient availability
 3. Delivery of nutrients to flood plains & flooded forests
 4. Delivery of nutrients to coastal zone
Geomorphology – Values & Risks Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>HP Risk</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance of river channel for stability and ecological habitats in sub-basin and basin</td>
<td>Alteration of flows leading to increased erosion / incision Reduction in sediment delivery & change in grain-size</td>
<td>Maintain natural river seasonality Maintain natural range of daily water level changes Maintain sediment delivery on a seasonal basis</td>
</tr>
<tr>
<td>Floodplain and delta productivity & stability</td>
<td>Reduction in sediment load & change in grain-size distribution</td>
<td>Minimise sediment capture</td>
</tr>
<tr>
<td></td>
<td>Change to timing of sediment delivery</td>
<td>Retain seasonality of sediment delivery to ensure floodplain deposition at high flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retain high sediment loads during Tonle Sap reversal</td>
</tr>
<tr>
<td>Maintain habitats in local waterways</td>
<td>Sedimentation during construction</td>
<td>Minimise construction impacts</td>
</tr>
</tbody>
</table>
Example: HPP impacts on river geomorphology

- Downstream bed erosion is common impact
- Erosion starts at dam toe and progresses downstream
 - Decades to centuries required for stabilisation
 - Halted by bedrock or armouring (coarse rock)
- Bed erosion leads to bank instability

Graph shows depth of bed erosion at the same point downstream of a dam over 30 years
Identify mitigation options appropriate to values and risks

- **Wide range of mitigation options:**
 - Designing HPPs that minimise impacts & maximise mitigation options
 - Implementing infrastructure to enable mitigation
 - Developing operating rules to achieve mitigation goals
 - Coordinating operations with other HPPs minimise impacts and maximise mitigation
 - Implementing catchment management to reduce overall impacts and maximise benefits

- **Mitigation approaches may change over life-cycle of project**
 - Construction / operations / decommissioning
Sediment Mitigation Approaches during Planning

- Planning, siting, design – VERY important for mitigation
 - Small volume reservoirs with inflow>>storage
 - Smaller impact on flow regime
 - Less sediment retention
 - Dam position wrt upstream tributaries
 - Unregulated tributaries enter downstream
 - Decreases percentage of flow & sediment regulated
 - Long downstream bedrock reach to limit impacts
 - Localised loss of sandy insets
 - River bed erosion controlled by bedrock
 - Infrastructure in place to maximise operational & mitigation options
 - Off-stream impoundments
 - Low level gates
 - Re-regulation weir to minimise water level fluctuations
 - By-pass channels, sedimentation ponds
 - Multiple intakes
 - Guided by site specific understanding

Dams A, B & C will have different impacts
Mitigation: Dam Design & Siting ‘tools’

Palmieri et al., 2003
Sediment Mitigation Approaches—Construction Stage

• Construction
 • Minimise sediment runoff
 • Sediment traps & cut-off drains
 • Protection of banks
 • Timing of works in dry season
 • Armouring of banks if erosion is identified as at risk
Sediment Mitigation Approaches-Operations

- Operations-sediment management
 - Majority of HP life-cycle
 - Minimise input / maximise throughput

- Minimise inputs
 - Catchment approaches
 - Management of sediment runoff in catchment to reduce sediment input to impoundments
 - Protects areas of high significance
 - Used in LMB
 - Protect biodiversity
 - Reforestation of degraded land
 - Bypass channels
 - Passes sediment around project during high flows
Sediment Mitigation Approaches - Operations

• Maximise throughput
 • Sediment sluicing - requires low level gates in dam
 • Draw down lake level at end of dry season
 • ‘Sluice’ initial sediment pulse
 • Low water level allows initial high flows to pass sediment through impoundment
 • High proportion of annual sediment load is discharged
 • Maintains seasonality of sediment pulse
 • Capture ‘lower’ sediment water later in flood pulse (if storage)
• Periodic sediment flushing
 • Lake level drawn down to river conditions to promote erosion of sediment
 • Ideally at start of wet season to maintain seasonality of sediment pulse
• Pass ‘turbidity currents’ through low-level gates
• Coordination of sediment flushing
 • Mainstream & tributary dams
Example Sediment Mitigation: Sediment Sluicing at Three Gorges Dam

- Flood season
 - 90% sediment
 - 60% flow
- Lake level reduced from ~175 m to 145 m
- Minimises sedimentation of fines in reservoir
- Does not pass bedload

- Similar approach could be achieved with by-pass channel

From Wang
Example Sediment Sluicing

- Sediment released from low level gates/intake
- Clear surface water released at same time
Sediment Mitigation Approaches

• Bedload management
 • Bedload not easily flushed until deposits reach toe of dam
 • Frequent flushing will increase rate of movement towards dam toe
 • Important for downstream habitats

• Dredging
 • Expensive but may be required to maintain shipping lane

• Sediment mining during drawdown
 • Reduce mining downstream of dam

• Upstream settling ponds
• Reintroduce material downstream

From Wang
Modelling to Evaluate Mitigation Options

- Modelling is a valuable tool for identifying and assessing mitigation options. Use models to:
 - Identify operating patterns to minimise sediment retention
 - Identify optimal conditions for sediment sluicing or flushing
 - Rates of draw down, minimum water levels, maximum discharge volume
 - Evaluate rates of daily water level changes on downstream impacts
- Investigate coordinated operations of mainstream HPs and tributary HPs
 - Flow interactions to minimise rates of water level in mainstream
 - Sediment management to maintain sediment delivery and prevent large plumes
Sediment Mitigation Challenges in the LMB

- Flow regime & sediment timing already altered by Lancang Cascade
 - Delayed onset of flood
 - Altered timing of sediment delivery
 - Reduction in sediment load
- Flow regime & sediment timing of mainstream is also altered by tributary HPP developments
 - Sediment mitigation in mainstream dams only effective if sediment arrives from upstream and tributaries
 - Goal should be to re-align sediment delivery with start of flood pulse
 - Co-ordination of operations likely to provide best environmental outcome
 - Requires sediment mitigation in tributary projects
 - Coordination between tributary and mainstream
 - Coordination between UMB and LMB
Water Quality

- River(s) or P/S inflow
- Operating Range
- Wind Mixing
- Spillway or High Level Intake
- Warm Water
- Cold Water
- Increasing Density
- Decreasing Oxygen
- Redox Reactions
- Fe, Mn, Zn
- Low Level Intake or Gate
- Depends on duration of storage
- Depends on depth of impoundment

Aquatic Mercury Cycle

- Deposition
- Volatilization and Deposition
- Volatilization and Deposition
- CH₃Hg Deposition and Runoff
- Hg(II) Deposition and Runoff
- Reduction
- Hg(0)
- Demethylation
- CH₃Hg
- Outflow
- Methylation
- Diffusion/Sediment Resuspension
- Sedmentation
- Sedimentation
Water Quality – Values & Risks

<table>
<thead>
<tr>
<th>Value</th>
<th>HP Risk</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance of water quality in LMB</td>
<td>Decrease in quality of water during impoundment</td>
<td>Maintain good water quality within impoundments</td>
</tr>
<tr>
<td>Seasonal water quality cycles (e.g. temp, nutrients, turbidity)</td>
<td>Loss of seasonal changes due to storage and disconnect between sediment supply and flow</td>
<td>Maintain seasonal water quality signals</td>
</tr>
</tbody>
</table>
Water quality risks during storage

- Site and project specific – include:
 - Decreased DO from decay of organic matter
 - Increased light penetration due to sediment reduction
 - Altered temperature regime
 - Nutrient trapping
 - Stratification of water column
 - Potential low DO
 - Metal release from sediments
- Interaction between other activities and HPPs
 - Increased water availability can intensify agriculture & other development
 - Industrial discharges can alter WQ in impoundment
Water Quality Mitigation Approaches (1)

- Planning, siting, design:
 - Small volume reservoirs with inflow>>storage
 - Smaller impact on flow regime
 - Reduced storage period
 - Reduced risk of stratification
 - Steep reach for dam-site
 - Promotes turbulence and re-oxygenation downstream
 - Unregulated tributaries enter downstream
 - Decreases percentage of regulated flow
 - Removal of organic matter from inundation area
 - Retain some vegetation for future fish habitat?
 - Depth of intake affects stratification

(Dai et al, 2013)
Stratification in Reservoirs

Shallow Reservoir

Deep Reservoir

Henty Lake

Water Temperature (°C)

Depth (m)

9-Aug-11
27-Sep-11
22-Nov-11
11-Jan-12
27-Mar-12
18-May-12

Dissolved Oxygen (%Sat)

Depth (m)

9-Aug-11
27-Sep-11
22-Nov-11
11-Jan-12
27-Mar-12
18-May-12

L Mackintosh at Dam

Water Temperature (°C)

Depth (m)

8-Aug-11
28-Sep-11
24-Nov-11
11-Jan-12
26-Mar-12
16-May-12

Dissolved Oxygen (%Sat)

Depth (m)

8-Aug-11
28-Sep-11
24-Nov-11
11-Jan-12
26-Mar-12
16-May-12
HPP impacts on downstream water quality

- Temperature fluctuations affect fish and OAOs
- Peaking operations can alter temperature over short time periods
 - When operating, Temp is higher / lower than ambient due to changes during storage
- Storage projects can alter temperatures continuously
 - Remove seasonal cues for migration, spawning, etc

Temperature in discharge from HPP compared to temperature in unregulated river

‘X’ = unregulated river
Water Quality Mitigation Approaches (2)

- Infrastructure to reduce WQ impacts
 - Low dams & shallow impoundments
 - Reduce risk of stratification
 - Multiple outlets, including high level
 - Avoid discharge of poor quality water
 - Potential to ‘mix’ water discharged
 - Potential to release water during sediment flushing to reduce SS in downstream
 - Infrastructure in place to maximise operational & mitigation options
 - Aeration weir or ponds
 - Multiple intakes
- Guided by site specific monitoring
WQ Mitigation Approaches - Construction

- Minimise runoff of contaminated water
 - Oils, fuels, drilling fluids
- Management of sanitation & waste water at work sites & camps
 - Large influx of workers needs to be managed
- Management of solid wastes to avoid leaching
- Minimise sediment runoff

Secure waste disposal
Site at Nam Ngiep
WQ Mitigation Approaches-Operations

- Water quality management
 - Majority of HP life-cycle
 - Challenges will change over time
- Maximise quality of inflowing water to impoundment
 - Catchment approaches
 - Land use management to minimise sediment, fertilizer, herbicide, pesticide runoff
 - Protected areas or buffers around impoundments
- Minimise residence time
 - Reduce risk of stratification and low DO
 - Reduce risk of algal growth of sediment flushing
- Use infrastructure to increase DO
WQ Mitigation Approaches

- Maximise quality of discharge from impoundment
 - High level intakes / gates
 - Passive aeration
 - Aeration channels / weirs
 - Air pumping into sub-surface waters
- Air injection in power station
- Algal bloom management
 - Physical mixing of surface waters
 - Harvesting of algae
Multi-approach mitigation of DO

- Low dissolved oxygen in discharge from Tennessee Valley Authority schemes
- Implemented a range of measures
 - Limited power production in summer months
 - Aerating turbines
 - Water surface pumps
 - Oxygen injection & air blowers
 - Aeration weirs
- Live monitoring
- Improved downstream environment
- Increased operational flexibility
Water Quality Mitigation Challenges in the LMB

• Trend is towards increasing nutrient and COD concentrations in LMB
 • Whole of LMB issue

• Water quality of influent water will be affected by upstream mainstream and tributary HP projects
 • Many projects coming on line soon
 • High risk of low DO water from each project during early years
 • Potential for large cumulative impact on downstream HPs

• Can’t predict how future developments will affect WQ

• Decoupling of sediment from flow will alter nutrient delivery in LMB
 • Goal should be to retain water quality annual cycles

• Co-ordination and communication with other mainstream and tributary operations likely to provide best environmental outcome
Modelling to Evaluate Mitigation Options

• Goal: Maintain good water quality within impoundments
 • Modelling to provide information about residence times
 • Likelihood of water temperature increase
 • Risk of stratification and discharge of low DO water
 • Circulation within impoundments
 • Deposition patterns for sediments & assoc. nutrients
 • Long-term trends as impoundment ‘evolves’

• Goal: Good discharge water quality
 • Modelling and local experience to guide mitigation
 • What is presently working in LMB
 • Use of aeration weirs & re-regulation ponds
Summary of Mitigation Approaches

• Mitigation needs to be based on site-specific monitoring and understanding of ecosystem processes in the local downstream environment

• Whole of catchment approach required which recognises interaction between HPs and other activities
 • Land use changes / run off
 • Sediment extraction

• Mitigation measures likely to be most successful if based on communication and coordination between developers/operators
 • Coordinated sediment sluicing
 • Maintenance of seasonal flow patterns (e.g. T1, T2, etc.)

• Mitigation in LMB challenging due to:
 • Evolving impacts from existing UMB dams
 • Large number of tributary HPs projects being developed at same time
THANK YOU