Aquatic ecosystem connectivity, ecosystem processes, and watershed integrity under Mekong dam development

International Conference on Watershed Management
Chiang Mai

March 2011

Nikolai Sindorf, WWF-Conservation Science Program
Trang Dangthuy, WWF-Greater Mekong Program Office
• develop a science-backed environmental narrative that guides strategic
decision-making on dam impacts and connectivity, work towards a
globally-applicable template

• test river network connectivity visualizations on the Mekong with a
focus on dam development

• propagate an ecosystem inclusive, basin-wide, approach to dam
development
1. Aquatic ecosystem classification
 - captures relevant basin-wide processes
 - incorporates essential migration triggers
 - open-sourced, transparent, replicable

2. Connectivity visualization
 - upstream-downstream network analysis
 - allows multiple scales
 - globally replicable to any river system

3. Dam locations
 - location based; not data-based
 - configuration of multiple dams, river system perspective

4. Consistent connectivity metric
 - network algorithm; no environmental valuation
 - comparative and scalable
 - not a silver bullet; part of much broader assessment

©WWF, 2011
Aquatic ecosystem classification

Classifier	Association, representative of:
elevation |
slope |
karsts |
river length |

©WWF, 2011
Our dam database contains over 50 of the largest or most prominent dams in the basin, and includes hydropower and agricultural dams. It excludes a large amount of smaller, agricultural dams.
In our initial analysis we found out that the current layout of dams ‘blocks’ 40% of the Mekong.
Connectivity applied to dams and large tributaries

Number of connected ecosystems:
- 1
- 2
- 3
- 4
- 6
- 11

©WWF, 2011
Using a network connectivity algorithm, we were able to determine that currently **45%** of ecosystem connectivity is preserved in the Mekong according to this ecosystem classification.
Impacts on Mekong-wide ecosystem connectivity

<table>
<thead>
<tr>
<th>Project name</th>
<th>Capacity</th>
<th>Impact on connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sayaboury</td>
<td>1,260 MW</td>
<td></td>
</tr>
<tr>
<td>Nam Theun 2</td>
<td>1,070 MW</td>
<td></td>
</tr>
<tr>
<td>Se San cascade</td>
<td>1,540 MW</td>
<td></td>
</tr>
</tbody>
</table>
Connectivity applied to dams and large tributaries

Number of connected ecosystems:
- 1
- 2
- 3
- 4
- 6
- 11

©WWF, 2011
Impacts on Mekong-wide ecosystem connectivity

<table>
<thead>
<tr>
<th>Project name</th>
<th>Capacity</th>
<th>Impact on connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sayaboury</td>
<td>1,260 MW</td>
<td>5.0 % decrease</td>
</tr>
<tr>
<td>Nam Theun 2</td>
<td>1,070 MW</td>
<td>0.8 % decrease</td>
</tr>
<tr>
<td>Se San cascade</td>
<td>1,540 MW</td>
<td>1.2 % decrease</td>
</tr>
</tbody>
</table>

Overall ecosystem connectivity is very vulnerable to dam development on the main stem; the reproduction of ecosystem processes in the Mekong is extremely sensitive to the impacts of main stem dams because of its layout; a very long main stem fed by relative short tributaries.
Conclusions and recommendations

• Work towards an open, consistent and reliable database of all existing dams in the Mekong basin, include planned dams

• Dams on the mainstream have disproportional impacts on the connectivity of the ecosystems, compared to tributary dams

• Incorporate ecosystem processes connectivity as a guideline in basin-wide dam planning
The methodology, analysis, and maps in this presentation are under copyright of WWF-2011, and need to be properly referenced and acknowledged when being reused.

Please contact us at:
trang.dangthuy@wwfgreatermekong.org
nikolai.sindorf@wwfus.org

http://wwf.panda.org/what_we_do/where_we_work/greatermekong/