BUILDING CAN THO CLIMATE CHANGE RESILIENCE ACTIVITIES PLAN

CANTHO SCD 158 – CCCO
Mr. KYQUANGVINH
BUILDING CAN THO CLIMATE CHANGE RESILIENCY ACTIVITIES PLAN

• GENERAL OF CANTHO CITY

- Located at the end of Mekong river; 169km from Ho Chi Minh city and 75km from the Pacific ocean.
- Total area: 1,400 km², including 9 districts and 85 wards – communes.
- Population: 1,200,000, 51% in urban area. Population density: 840 people/ km². (20,359 poor families)
- GDP per capital: 1400 USD (2008)
- Master plan to 2020:
 + GDP per capital = 4611 USD, 2750 USD in the flooded area, and 5600 USD in the tidal area.
 + No more poor families.
Part I. Past trends of Climate - Historical data

- Air temperature
Part I. Past trends of Climate - Historical data

- Highest water level

![Graph showing the highest water levels at Can Tho station in the period of 1977-2008.](graph.png)
Part I. Past trends of Climate - Historical data

• Highest water level 2010
Part I. Past trends of Climate - Historical data

• Salinity intrusion 2010
Part I. Past trends of Climate - Historical data

- Hazards-Capacity-Vulnerabilities Assessment (HCVA) with the participation of communes
 - Air temperature increase
 - Drought increase and floods increase
 - Saltwater intrusion
 - The more of extreme weather phenomena
 - River erosion due to the change of flow regime.
Part II. Synthetic Climate change modeling

1. Modeling:
 • Air temperature increasing and long lasting
Part II. Synthetic Climate change modeling

1. Modeling:
 • Complicated hydrology regime: Heavy drought in dry season,
Part II. Synthetic Climate change modeling

1. Modeling:
 • Complicated hydrology regime: deeper inundation in rainy season
Part II. Synthetic Climate change modeling

1. Modeling:
 - Complicated hydrology regime: deeper inundation in rainy season
Part II. Synthetic Climate change modeling

1. Modeling:
 - Salinity intrusion crises
 - More extreme events
Part II. Synthetic Climate change modeling

2. Double impact: climate change and unsustainable activities in the upstream of Mekong
Part II. Synthetic Climate change modeling

3. Vulnerabilities:

- Decreasing of freshwater availability for households using and production demands,
- Decreases in crop yield due to soil moisture reducing; evapotranspiration increasing land degradation.
- Health affected by: Heat stress, increases in endemic morbidity and mortality due to diarrheal, cholera and dengue...
- Deep inundation will likely to seriously affect the aquaculture industry and infrastructure.
Part III. CC resilience activities plan

1. Planning methods

a. Proposal step base on:
 – Synthetic Climate change modeling
 – HCVA with participation of communes
 – Results of 3 Share, Learning, Dialog workshops
 – Concept-notes from district and city staff

b. Screening step base on following tools:
 – Matrix
 – capacity assessment
 – Costs benefits analysis
Part III. CC resilience activities plan

2. Resilience activities plan

• *Non-structural solutions-capacities increasing*

 – Climate change awareness strengthening: Establish of CCCO; Enhancement CC awareness for communities, and government’s staff;
 – Establishment web of climate change database;
 – Integration the climate change resilience activities into the approved programs, projects of Cantho city;
 – To Issue regulations related to climate change
 – To manage, share, rational use of water resources.
Part III. CC resilience activities plan

2. Resilience activities plan

 - Working solutions
 – Building capacity of preventive health care system;
 – Improving the eco-city to combat the CC;
 – Making decentralized system water reservoirs and manage exploit of groundwater and surface water;
 – Promulgate regulations about altitude foundation;
 – Poor families resettlement base on providing livelihoods;
 – Building multifunctional school in communes;
Part III. CC resilience activities plan

2. Resilience activities plan

• *Working solutions*

 – Building decentralized water supply and waste treatment plants;

 – Mapping the bottom and banks of rivers to propose appropriate measures avoiding bank erosion;

 – Building a center for researching agricultural to increase food production in climate change;

 – Applying clean production processes in the industrial sector;

 – Building solar energy plant;
Part IV. Advantages and difficulties

Advantages:

– The fluctuations of weather and hydrology are suitable for social awareness campaign on climate change;
– The leaders of city government is very supportive of the plan to adapt to climate change;
– Rockefeller Foundation and other organizations within and outside the country are enthusiastically planning climate change adaptation
Part IV. Advantages and difficulties

Difficulties

– Climate change is a very large field,
– Time to make resilience plan is too short,
– Little budget for research and completion,
– Local plan must depend on central government plans to adapt to climate change,
– Difficult to assess the effectiveness of the response to climate change activities.
• Part V. Implement the CCRAP

• Legal formality: The PC promulgates CCRAP in Cantho City by a decision to all government agency and public to implement,

• Organization to implement: The PC establish CCCO to manage the implementation of CCRAP,

• Budget to implement: The budget to carry out CCCRAP comes from CC-NTP of central government, foreign NGOs and countries,
Thanks for your attention!