Australia’s science-to-policy modelling platform

Robert Carr
Deputy CEO
eWater Ltd
Not-for-profit Australian Government-Owned

We provide software development, capacity building and adoption services.
~30 people engineers, scientists, software developers and admin.
MOU with Murray Darling Basin Authority

eWater tools and technology are made available under the MOU between the MDBA and MRC via an exchange of letters in 2014:

It is agreed by MDBA and MRC that eWater is an important member of the MDBA partner network in IWRM River Basin Modelling Technology and Capacity Building as defined under the MOU. It is agreed that where eWater activities support the Scope and Outcomes (Sections 12 and 13) objectives and the specific subject areas mentioned in Annex 2, MRC and eWater are authorised to share data, technology and knowledge under the auspices of the MRC/MDBA MOU subject to the Intellectual Property Provisions defined in Clause 22 of the MOU.

The MOU was agreed to be modified as such by an exchange of letters between MRC CEO Hans Guttman and MDBA CEO Rhondda Dickson in September 2014.
A new modelling capability for Australia

A realisation that earlier generation tools (IQQM, REALM & BIGMOD) would struggle to handle 21Century water management complexity

- Increased Water Policy and Governance Expectations
- Focus on water use efficiency (eg. tradeable rights, environ. water)
- Ecological outcomes and Climate uncertainty
- Generational Change in Software Development

Released in 2012, eWater Source is a nationally consistent forecasting and planning capability, integrating:

- Balancing human and environmental needs
- Conjunctive surface and groundwater use
- Rural and urban supply
- Water use and reuse
- Planning and operational requirements
- Managing Water Accounting and Sharing
Guiding Principles for Modelling

Adaptive Complexity.

Matching models, data and outcomes (e.g. as study becomes more complex, use more complex models)

Flexibility – foster research and address uncertainty

No one right solution – multiple options (e.g. all models are approximations)

Openness and Community

Collaborative approach to development and access (e.g. free, open development platform)

Defensible

Good/Best Practice - Tools and Applications (Good Practice Guidelines)
eWater Source – integrated supply and demand of water quantity and quality - local to basin scale
Major Features Comparison with IQQM

1. Water Quality - Multiple Species with Filtering & Decay (upgraded from IQQM)
2. Multiple Crop and Urban models for demand estimation
3. Incorporation of Environmental Demands (informed by outside process i.e. DRIFT)
4. Surface/Groundwater interaction incl. groundwater head and floodplain recharge
5. NETLP for Multi-Reservoir Operation
6. Genetic Algorithm Optimisation Tools for Tradeoff Analysis
7. River Cross-Sections, Flood Damage and Rating Curves
8. Operational Capability – forecasting of flows in short/medium/long term
9. Multiple Rainfall runoff models - Regionalisation methods (for ungauged catchments and different land use types) Stochastic procedures (for rainfall inflows)
10. Object Code C#/.NET and Cloud Enabled
11. Plugins, FEWS Adapter/Interface
12. Auto Calibration Tool
13. TIME Library integration
14. Input/output data standards (compliant with WDTF, Hydysys, SQL, Oracle, etc.)
15. Documentation
 • Up to date user guide with context-sensitive help (on-line version)
 • Up to date technical reference manual
 • Training Videos
 • Best Practice Guidelines
 • Community of Practice, Knowledge Forums and FAQ
River Manager Mode

Nodes representing points of interest, physical and management characteristics
Source as Integration Framework Enhances DSF Capability

5 Catchment Export Methods

DRIFT -> Environmental Demands

11 Catchment Runoff models

WUP - FIN
SWAT (incl. 2-way communication)

3 link decay models

WUP - FIN
SWAT

11 link routing models

WUP - FIN +
Physical, Chemical, Economic & Social

Sub-Catchment
Catchment
River Basin

Political, Legal & Agency Divisions

Municipality
Province
State

Sources: Surface, Groundwater, Desal, Recycled etc…
Sectors: Hydropower, Irrigation, Urban, Environmental, etc…

Transboundary IWRM
Scenario Comparison
Multiple Operational or Planning Horizon Configurations

- High Demand Wet Weather Operations - 30% Probability
- High Demand Normal Operations – 20% Probability
- High Demand Maintenance of Tanks – 50% Probability

e.g. Strategy to provide 95% reliability of supply over forecast period
Optimisation of Complex and Cascading Reservoirs
Source and updates is free for MRC and National Teams and supported by eWater team of developers and engineers.
eWater Tools to Support MRC Programs

• 2013 Pilot to demonstrate same as IQQM
• Support for PWUM
• Support for Hydrology Component
• Support for Council Study
Comparison at Khortum

<table>
<thead>
<tr>
<th>Model period 1/1/1985 to 31/12/2006</th>
<th>Minimum Flow (m^3/s)</th>
<th>Maximum Flow (m^3/s)</th>
<th>Mean Flow (m^3/s)</th>
<th>Volume (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eWater Source</td>
<td>0</td>
<td>1396</td>
<td>99.2</td>
<td>797368</td>
</tr>
<tr>
<td>IQQM</td>
<td>0</td>
<td>1396</td>
<td>99.2</td>
<td>797368</td>
</tr>
</tbody>
</table>
PWUM - eWater Source

On 24th October 2013, the Regional Consultative Meeting on Implementation of PWUM held at Vientiane, Lao PDR a number of recommendations were made related to modelling tools to support PWUM.

1. As a complementary tool to DSF, eWater Source was proposed to estimate water use in the proposed pilot area.
2. The detailed information of using eWater Source for water use estimation should be provided.
3. The training facility and timeframe for eWater Source should be considered.
4. A comparison study on water use estimation using DSF and eWater Source should be conducted.
5. It is highly recommended that IKMP TACT is the most appropriate forum for a discussion on the proposed tool.
eWater and LNMC – Modelling of SeDon Catchment
SeDon set up in parallel (work is close to finalisation)

1. SWAT/IQQM - LNMC
2. eWater Source – eWater/LNMC

- Comparison of Results
- Experience of Modelling Team in the Process
- Way Forwards
Basic Data Sets and Capacity Building

- Digital Elevation Model (create catchments)
- Land Use Data (5 land uses)
- Rainfall Stations (8), Evaporation (2)
- Stream Gauging (3)
- Reservoir Dimensions and Rule Curve (2)
- 34 Water Users - Crop Patterns (from IQQM)
- 2 training sessions (1 week each in 2014) more planned for 2015
Source Catchments Setup

[Image of a software interface showing a map with various data sources and a configuration dialog box for setting input sets, start date, end date, and time step.]
Nash-Sutcliffe on Log Flows to focus on low flow performance
Calibration at Saravane – High Flows

SWAT R2 = 0.49
GR4J R2 = 0.53
Low Flow Analysis at Saravane – Important for PWUM

Graph showing flow data from SWAT and GR4J models, with flow exceeded % of time indicated.
Next Steps
Develop PWUM Water Account Similar to MDBA
Good Practice Guidelines Modelling and Data

Define Supply and Demand by Location and Sector as standard report
eWater Support for Hydrology Component

1. Develop Model of Basin tailored for water balance (incl. jurisdictions, groundwater and sectoral water users)
2. Incorporate Rating Curves
3. Using Function Manager, bring in indicator metrics for hydrological conditions (drought, flood) consistent with MRC standards.
4. Create Historical Water Balances for Annual Reporting
5. Use model for Dry Season Operational Forecasting – generate indicator metrics with uncertainty
The CFSR is a third generation reanalysis product. It is a global, high resolution, coupled atmosphere-ocean-land surface-sea ice system designed to provide the best estimate of the state of these coupled domains over this period. The CFSR includes (1) coupling of atmosphere and ocean during the generation of the 6 hour guess field, (2) an interactive sea-ice model, and (3) assimilation of satellite radiances. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels. The global ocean is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels. The global land surface model has 4 soil levels and the global sea ice model has 3 levels. The CFSR atmospheric model contains observed variations in carbon dioxide (CO2), together with changes in aerosols and other trace gases and solar variations. With these variable parameters, the analyzed state will include estimates of changes in the Earth system climate due to these factors. The current CFSR will be extended as an operational, real time product into the future.

KEY STRENGTHS:

- Superior to previous NCEP reanalyses with respect to: improved model, finer resolution, advanced assimilation schemes, atmosphere-land-ocean-sea ice coupling, assimilates satellite radiances rather than retrievals
- Accounts for changing CO2 and other trace gasses, aerosols, and solar variations
- Approaches the horizontal resolution of regional reanalyses like the NARR and Arctic System Reanalysis
eWater Support for PWUM & Hydrology Program

eWater in partnership with IKMP & ICBP will develop and implement capacity building and technology transfer support to MRC and Member Countries in the following ways:

1. Initially, a regional workshop involving senior modellers from MRCS and the Country modelling teams will be held to demonstrate the proposed approach to PWUM & Hydrology Component. This workshop would be prepared for and with National Mekong Committees and Secretariats, Line Agencies and the MRC Secretariat;

2. Implement a series of Regional Introduction Meetings, Regional & National Training workshops and Technical Support in consultation with ICBP, IKMP and eWater to enhance the capability of the Mekong River modelling community for the ongoing use of eWater tools for PWUM & Hydrology Component

3. eWater will provide in-house technical support to IKMP on modelling approaches, integration of Source with the DSF and working with IKMP modelling team to provide workshops and training courses in Source to PWUM and other components and programs as may request assistance.
eWater Source Modelling to Support Council Study

- Source as integration framework within DSF combining impact tools with Extended Toolbox Models (SWAT and ISIS, IWRM and VMOD)
- Analyse Multi-Reservoir Operation – Can augment IQQM
- Incorporate Environmental Flows (inform from DRIFT and Fisheries)
- Address impact of agreements and water source rights on strategies
- Evaluate scenarios and tradeoffs
Proposal to TACT:

1. Acknowledge eWater Source as progressive successor to IQQM and available via the MOU with MDBA

2. Agreement on the use of eWater Source as an additional approved tool for PWUM pilot studies and Hydrology Component

3. Acknowledge that eWater Source is recommended as a tool by TACT available to the Council Study subject to review and approval by RTWG.