Construction of Scenarios used for Council Study

Dr. Anthony Green

22 February 2017
Contents

• Council Study Scenarios
 • Future Vision
 • Main Scenarios
 • Sub Scenarios
Future Vision - Scenarios

- CS Examines **Scenarios** of change in **multiple sectors** which start and have benefits and impacts at **different times**.
- Scenario Changes based on **planning information and policies** from Member Countries for 2007, 2020 and 2040

Prosperity

Loss
Scenarios of Change

Exogenous
Climate Change
Socioeconomic condition

Water Sectors
Landuse
Agriculture
Irrigation
Water Supply
Sand Mining
Navigation
Flood Control
Hydropower

Infrastructure/
Social Development in specific years
1960, 2007, 2020, 2040

Integrated Multi-sector Cumulative Impact Assessment

Synthesis
Main benefits
Key negative impacts
Distribution
Knowledge gaps

Assess Impacts on Composite Indicators
Cross-sectoral
Sustainability
Transboundary

Water Resource Development Scenarios
Irrigation
Hydropower
Flood Control
Navigation
Agriculture and Landuse
Domestic & Industry

Disciplinary Impact Assessments
Hydrology
Sediments
Bio-resources
Economics
Social

Exogenous Trends & Scenarios
Demography, climate

www.mrcmekong.org
Main Water Resource Development Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Level of Development for water-related sectors</th>
<th>Climate Hydrological Variability</th>
<th>Flood-plain development</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU</td>
<td>DIW</td>
<td>FPF</td>
<td>HPP</td>
</tr>
<tr>
<td>M3</td>
<td>Planned Development Scenario 2040</td>
<td>2040</td>
<td>2040</td>
</tr>
</tbody>
</table>

* ALU = Agric/Landuse Change; DIW = Domestic and Industrial Water Use; FPF = flood protection infrastructure; HPP = hydropower; IRR = irrigation; and NAV = Navigation
Main water resource development scenarios

• **Physical Changes** ie Landuse/Infrastructure such as Irrigation and Hydropower

• **Management** – ie flushing sediment from dams (MRC-Preliminary Design Guidance), flood zoning and protection standards adopted.

• **Exogenous development** Urbanisation and Climate Change, demographics

• **Socioeconomic Change** including livelihoods, assets at risk of flood, food requirements, economy.
Land use

<table>
<thead>
<tr>
<th>Area (million ha)</th>
<th>Cambodia</th>
<th>Vietnam delta</th>
<th>Vietnam highlands</th>
<th>Laos</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>10.1</td>
<td>0.2</td>
<td>2.0</td>
<td>17.7</td>
<td>4.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area (million ha)</th>
<th>Cambodia</th>
<th>Vietnam delta</th>
<th>Vietnam highlands</th>
<th>Laos</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>3.7</td>
<td>2.6</td>
<td>1.1</td>
<td>1.9</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Land use

Area (million ha)

Cambodia: 7.1
Vietnam delta: 0.2
Vietnam highlands: 1.7
Laos: 18.9
Thailand: 4.2

2040
Dry Season Irrigation

Area (million ha)

Cambodia: 0.3
Vietnam: 2.0
Laos: 0.1
Thailand: 0.2

2007
Dry Season Irrigation

area (million ha)

Cambodia: 0.4
Vietnam: 2.0
Laos: 0.2
Thailand: 0.6

2020
Dry Season Irrigation

<table>
<thead>
<tr>
<th>Country</th>
<th>Area (million ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambodia</td>
<td>0.8</td>
</tr>
<tr>
<td>Vietnam</td>
<td>1.9</td>
</tr>
<tr>
<td>Laos</td>
<td>0.4</td>
</tr>
<tr>
<td>Thailand</td>
<td>0.7</td>
</tr>
</tbody>
</table>

2040
Navigation

- 500 DWT
- 2000 DWT
- 3000 DWT
- Major inland port
- Khone Falls canal

2040
Hydropower

- Mainstream dam
- Tributary dam
Hydropower

Mainstream dam

Tributary dam
Hydropower

- Mainstream dam
- Tributary dam
Hydropower

- Mainstream dam
- Tributary dam

www.mrcmekong.org
Climate change
RCP4.5 Example Change
Factors – Temperature in October and December
IPSL October
Climate change
RCP4.5 Example Change
Factors – Rainfall
Change (%) in October and December

www.mrcmekong.org
Sub-scenario Formulation

Comparison

The analytical value of scenarios comes from their comparison

Thematic sector impacts

To understand the impacts of a sector need to kept at base level

- Scenarios and sub-scenarios are a key part of the design of the assessment
- The MRC Suite of Models predicts the physical changes in Hydrology, Sediment and Nutrients for each Scenario.
- Assessments for the linkages between each sector and the socioeconomics is then made
Sub-scenarios

Designed to show possible change relative to Main 2040 Scenario

1. ALU = Agriculture & Landuse Change;
2. IRR = irrigation
3. DIW = Domestic and Industrial Water Use and Sand Mining;
4. HPP = Hydropower
5. FPF = Flood protection/Floodplain infrastructure
6. NAV = Navigation

‘2040 Climate’ MRC Case Warmer and Seasonal Change is used based on IPSL RCP4.5. Other Climate Projections are tested under Climate Scenarios

<table>
<thead>
<tr>
<th>ID</th>
<th>Scenario</th>
<th>Scenario Category</th>
<th>Description</th>
<th>Climate & Hydrological Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T0</td>
<td></td>
<td>Pre-Development Scenario 1960</td>
<td>Historic</td>
</tr>
<tr>
<td>2</td>
<td>M1</td>
<td>MAIN</td>
<td>Early Development Scenario 2007</td>
<td>Historic</td>
</tr>
<tr>
<td>3</td>
<td>M2</td>
<td></td>
<td>Definite Future Development Scenario</td>
<td>Historic</td>
</tr>
<tr>
<td>4</td>
<td>M3</td>
<td></td>
<td>Planned Development 2040</td>
<td>2040 Climate</td>
</tr>
<tr>
<td>5</td>
<td>C1</td>
<td>Climate</td>
<td>M3 + no CC</td>
<td>2040 Climate</td>
</tr>
<tr>
<td>6</td>
<td>C2</td>
<td>Climate</td>
<td>M3 + RCP_45_GFDL_2040</td>
<td>2007</td>
</tr>
<tr>
<td>7</td>
<td>C3</td>
<td>Climate</td>
<td>M3 + RCP_45_GISS_2040</td>
<td>2007</td>
</tr>
<tr>
<td>8</td>
<td>A1</td>
<td>Agriculture & Land Use</td>
<td>M3 + w/o ALU</td>
<td>2007</td>
</tr>
<tr>
<td>9</td>
<td>A2</td>
<td>Agriculture & Land Use</td>
<td>M3 + High level ALU implementation</td>
<td>2007</td>
</tr>
<tr>
<td>10</td>
<td>F1</td>
<td>Flood Protection</td>
<td>M3 + w/o FPF</td>
<td>2007</td>
</tr>
<tr>
<td>11</td>
<td>F2</td>
<td>Flood Protection</td>
<td>M3 + FPF2</td>
<td>2007</td>
</tr>
<tr>
<td>12</td>
<td>F3</td>
<td>Flood Protection</td>
<td>M3 + FPF3</td>
<td>2007</td>
</tr>
<tr>
<td>13</td>
<td>I1</td>
<td>Irrigation</td>
<td>M3 + w/o IRR</td>
<td>2007</td>
</tr>
<tr>
<td>14</td>
<td>I2</td>
<td>Irrigation</td>
<td>M3 + High level IRR</td>
<td>2007</td>
</tr>
<tr>
<td>15</td>
<td>H1</td>
<td>Hydropower</td>
<td>M3 + w/o HPP</td>
<td>2007</td>
</tr>
<tr>
<td>16</td>
<td>H2</td>
<td>Hydropower</td>
<td>M3 + HPS1</td>
<td>2007</td>
</tr>
<tr>
<td>17</td>
<td>H3</td>
<td>Hydropower</td>
<td>M3 + HPS2</td>
<td>2007</td>
</tr>
<tr>
<td>18</td>
<td>N1</td>
<td>Navigation</td>
<td>M3 + w/o NAV</td>
<td>2007</td>
</tr>
<tr>
<td>19</td>
<td>D1</td>
<td>Water Use Sand Mining</td>
<td>M3 + w/o DIW</td>
<td>2007</td>
</tr>
</tbody>
</table>
Example - Flood protection sub-scenarios include options for increased level of flood protection and flood plain management

<table>
<thead>
<tr>
<th>Scenario and sub-scenarios</th>
<th>Level of Development for water-related sectors</th>
<th>Climate Hydrological Variability</th>
<th>Floodplain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALU</td>
<td>DIW</td>
<td>FPF</td>
</tr>
<tr>
<td>M3 Planned Development Scenario 2040</td>
<td>2040</td>
<td>2040</td>
<td>2040</td>
</tr>
<tr>
<td>F1 Planned Development 2040 without FPD</td>
<td>2040</td>
<td>2040</td>
<td>2007</td>
</tr>
<tr>
<td>F2 Planned Development 2040 with FPF2</td>
<td>2040</td>
<td>2040</td>
<td>FPF2</td>
</tr>
<tr>
<td>F3 Planned Development 2040 with FPF3</td>
<td>2040</td>
<td>2040</td>
<td>FPF3</td>
</tr>
</tbody>
</table>

* ALU = Agric/Landuse Change; DIW = Domestic and Industrial Water Use; FPF = flood protection infrastructure; HPP = hydropower; IRR = irrigation; and NAV = Navigation
Climate change sub-scenarios

<table>
<thead>
<tr>
<th>Sub-scenarios</th>
<th>Level of Development for water-related sectors</th>
<th>Climate Hydrological Variability</th>
<th>Flood-plain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-scenarios</td>
<td>ALU</td>
<td>DIW</td>
<td>FPF</td>
</tr>
<tr>
<td>M3 Planned Development Scenario 2040</td>
<td>2040</td>
<td>2040</td>
<td>2040</td>
</tr>
<tr>
<td>C1 Planned Development 2040</td>
<td>2040</td>
<td>2040</td>
<td>2040</td>
</tr>
<tr>
<td>No climate change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2 Planned Development 2040 + Wetter Climate</td>
<td>2040</td>
<td>2040</td>
<td>2040</td>
</tr>
<tr>
<td>C3 Planned Development 2040 + Drier Climate</td>
<td>2040</td>
<td>2040</td>
<td>2040</td>
</tr>
</tbody>
</table>

* ALU = Agric/Landuse Change; DIW = Domestic and Industrial Water Use; FPF = flood protection infrastructure; HPP = hydropower; IRR = irrigation; and NAV = Navigation
Conclusions

• The design of the Council Study Scenarios is for a comprehensive vision of change for the main cumulative scenarios in 2007, 2020 and 2040.

• The data and assumptions used are based on working with MRC Member Countries and agreed with them.

• The Sub Scenarios provide variations of the possible future including high, low and no change in each water sector.

• 1960 Scenario for ‘Pre Development’ Comparison

• Future Climate Change Included