LUANG PRABANG HPP
Fish Passage

December 2019
CONTENTS

- Overview and Requirements
- Powerhouse
 - U/S Migration
 - D/S Migration
 - Fish Friendly Turbines
 - Attraction Flow - Feeding System
- Right Bank
- Spillway
Overview and Requirements
FISH MIGRATION

Requirements and Design Philosophy

• Xayaburi as Basis for the Design
 – Fish Migration System in operation since 2019
 – Reference to Xayaburi system made in PNPCA for Pak Beng and Pak Lay
 – „99% of MRC comments incorporated” in Xayaburi design
 – Adjusted and optimised for Luang Prabang
 – No fish migration through NL required
 – No pumping stations, but 3 auxiliary units
 – No fish ladder: Less fluctuations in tailwater

• Requirements
 – U/S and D/S Migration required
 – NL can be used as additional passage
 – Operation up to 1-yr flood
 – Minimum for attraction:
 – 10% of min flow (Q_{95})
 – 1% of 1-yr flood
 – Max. water velocities:
 – 0.5 m/s in general, 1.2 m/s for < 0.2m
 – Minimum depth:
 – 3.0 m under all flows
 – Fish friendly turbine technology
FISH MIGRATION - OVERVIEW

Auxiliary Powerhouse
- Use of water flow from d/s migration for u/s migration
- Additional water for upstream attraction flow

Right Bank Fish Migration
- Separated from Navigation Lock
- Fish Lock and open channel

U/S Migration
- Multiple Entrances along PH
- 2 fish locks

D/S Migration
- Entrances above power intakes
- Fish-friendly turbines
Fish Migration at Powerhouse
FISH MIGRATION

U/S Migration System at Powerhouse

- **Entrances**
 - 2 x 7 entrances along d/s face of Powerhouse (2x3m each) at different levels
 - 2 openings on right side entrance, at different levels
 - 3 openings on left side entrance different levels
 - Spillway entrance, two openings (for wet season)

- **Attraction Flow**
 - Between 80 m³/s and 225 m³/s

- **Fish Collecting Galleries**
 - Along the entire length of the powerhouse
 - Connects all entrances
 - Leads to the fish locks at the left pier

- **Fish Locks**
 - Two fish locks, 6x6m each
 - Moveable screen floor
 - Fish crowder to «move» fish into the fish lock

- **Fish Monitoring station**
 - Fish monitoring station at the outfall structure towards the reservoir
FISH MIGRATION

D/S Migration System at Powerhouse

- **Entrances**
 - 14 entrances along u/s face of Powerhouse above power intakes
 - Size: 2.5 x 3.0 m

- **Attraction Flow**
 - Between 100 m³/s and 140 m³/s
 - Excess water used for auxiliary turbines

- **Fish Collecting Galleries**
 - Along the entire length of the powerhouse
 - Connects all entrances
 - Leads to the downstream chute at right pier

- **Downstream Chute**
 - Continuous operation of d/s chute
 - Constant flow of 20 m³/s
FISH MIGRATION

Fish Friendly Turbines

- Hydraulic Design
 - Minimized number of runner blades
 - Reduced runner speed
 - Smooth pressure changes
 - Low level of cavitation and turbulences

- Design adjustments
 - Minimized size of gaps between stationary and parts
 - Leading edge thickness (blunt)

- Environmental
 - Water filled hub (no oil leakages)
 - Leads to the downstream chute at right pier

- Fish Survival Calculations
 - Done by supplier acc. to G.F. Franke (1997)
 - CFD based Fish Trajectory Model by Streamlines will be done during basic design

<table>
<thead>
<tr>
<th>Species</th>
<th>Max. Length of the Fish</th>
<th>Average Thickness</th>
<th>Mortality Rate</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa Pak</td>
<td>50</td>
<td>11.5-15.5</td>
<td>8.0</td>
<td>92.0</td>
</tr>
<tr>
<td>Pa Sakang</td>
<td>40</td>
<td>13.5-20</td>
<td>6.5</td>
<td>93.5</td>
</tr>
<tr>
<td>Pa Mang</td>
<td>18</td>
<td>9.5-14</td>
<td>3.0</td>
<td>97.0</td>
</tr>
<tr>
<td>Pa Teab</td>
<td>18</td>
<td>5 - 7</td>
<td>3.0</td>
<td>97.0</td>
</tr>
<tr>
<td>Pa Sa-ee</td>
<td>45</td>
<td>17-19</td>
<td>7.5</td>
<td>92.5</td>
</tr>
</tbody>
</table>
FISH MIGRATION

Attraction Flow – Feeding System

- **Attraction Flow - demand**
 - 80 to 225 m3/s for u/s migration
 - 80 to 120 m3/s for d/s migration
- **Concept**
 - Use of attraction flow for d/s migration for u/s migration
 - Remaining water taken from reservoir
 - Water used for energy generation (auxiliary units)
- **Auxiliary Units**
 - In total 3 units, 60 m3/s each
 - 2 units fed by d/s migration system
 - 1 unit fed from reservoir
 - All water released into Feeding Pond
- **Feeding Pond**
 - Centralized distribution for u/s migration system
 - Collects all water from aux. units
 - Add. Bypass when capacity of aux. Units is reached

- **Intakes from d/s migration**
 - 80 m3/s to 120 m3/s
- **Intakes from reservoir**
 - 60 m3/s for aux. unit #3
- **Bypass**
 - Up to 60 m3/s
- **Feeding Galleries**
 - For u/s migration
FISH MIGRATION

Attraction Flow – Feeding System

Feeding Galleries
- Water from Feeding Pond
- 80 m³/s to 225 m³/s

Entrances
- Above Turbine Draft Tubes
- At different Elevations

Collection Gallery
- Leading towards Fish Locks
Fish Migration at Right Bank
FISH MIGRATION

Fish Migration System at Right Bank

Fish Lock
- One fish Lock foreseen
- Operational during entire year

Open Approach Channel
- Flow of 5 m³/s
- Also for attraction flow for entrances to fish locks

Entrances
- One at Spillway
 When water is spilled (flood season)
- One at Navigation Lock (permanent operation)
Fish Migration at Spillway
FISH MIGRATION

D/S Fish Migration System at Spillway

Spillway
- D/S migration possible through Spillway when in operation
- Usually for wet season
125 Years of Hydropower