CONTENTS

• Basic Studies
 – Flood Hydrology
 – Probabilistic and Deterministic Seismic Hazard Assessment

• Design Criteria
 – Hydraulic Design Criteria
 – Seismic Design Criteria

• Stability Checks

• Monitoring Program

• Emergency Planning and Dam Break Analysis
Basic Studies
DAM SAFETY

Basic Studies

- Flood Hydrology
 - Statistical Flood Hydrology
 - 10,000 yr flood: 33,500 m³/s
 - PMP/PMF Study
 - PMF: 41,100 m³/s

- Seismic Hazard Assessment

<table>
<thead>
<tr>
<th>Design Earthquake</th>
<th>Analysis Method</th>
<th>Return Period (year)</th>
<th>Peak Ground Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizontal</td>
</tr>
<tr>
<td>CE</td>
<td>Probabilistic</td>
<td>50</td>
<td>0.06</td>
</tr>
<tr>
<td>OBE</td>
<td>Probabilistic</td>
<td>145</td>
<td>0.13</td>
</tr>
<tr>
<td>DBE</td>
<td>Probabilistic</td>
<td>475</td>
<td>0.23</td>
</tr>
<tr>
<td>MDE</td>
<td>Probabilistic</td>
<td>2,475</td>
<td>0.37</td>
</tr>
<tr>
<td>SEE</td>
<td>Probabilistic</td>
<td>10,000</td>
<td>0.49</td>
</tr>
<tr>
<td>SEE</td>
<td>Deterministic</td>
<td></td>
<td>0.49</td>
</tr>
</tbody>
</table>
DAM SAFETY

Geological Investigation Program

Reservoir

Access Road

Boreholes Location
- Phase 1
- Phase 2

250 m
0
250

BH-33 BH-32 BH-31 BH-30
BH-29 BH-28 BH-27 BH-26
BH-25 BH-24 BH-23 BH-22
BH-21 BH-20 BH-19 BH-18
BH-17 BH-16 BH-15 BH-14
BH-13 BH-12 BH-11 BH-10
BH-09 BH-08 BH-07 BH-06
BH-05 BH-04 BH-03 BH-02
BH-01 BH-00

DECEMBER 2019
DAM SAFETY

Design Criteria

- Seismic Design Criteria
 - Dam Safety Relevant Structures -> SEE
 - All other structures -> DBE

- Hydraulic Design Criteria
 - Design Flood: 10,00 yr flood, (n.1)-rule
 - Safety Check Flood: PMF

- Hydraulic Model Tests
 - Flume tests for the Spillway carried out
 - Spillway Capacity is given
 - Test on overall model are ongoing
Stability Checks
DAM SAFETY

Stability Checks

- Standards
 - USACE manual
 - LEPTS (Lao Electric Power Technical Standards)
- Load Cases
 - Usual, Unusual and Extreme Load cases
 - Floatation, Sliding and Rotation/Otverturning
- Dam Safety relevant Structures
 - Navigation Lock
 - Spillway
 - Powerhouse, incl. Right and Left Pier
 - Closing Structure
- Results of Stability Checks
- Navigation Lock
 - Upper Lock not critical
- Spillway
 - Current design is conservative
- Right Pier
 - Right Pier is not critical (potential for optimization)
- Powerhouse
 - Relevant and already optimized
 - Safety requirements are fulfilled
 - Revision after layout is revised (hydraulic contours of draft tube as per equipment supplier)
- Left Pier
 - Left Pier is not critical (potential for optimization)
- Closing Structure
 - Relevant
 - Safety requirements are fulfilled
Monitoring Program
DAM SAFETY

Monitoring Program

- Relevant during impounding and operation
- General
 - Visual Inspections: Regular inspections by O&M staff
 - Survey Monitoring: Measurement of surface displacements and deformations
 - Monitoring Instruments: Deformation, water pressure, etc.
- Dam Instrumentation
 - Parameters and Instruments as below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Monitoring Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement, movement, settlement</td>
<td>Jointmeter, Rocmeter, Inclinometer, Levelling bolt, Stationary light reflector</td>
</tr>
<tr>
<td>Water level, water pressure</td>
<td>Gauge, Observation well, Piezometer</td>
</tr>
<tr>
<td>Leakage/ seepage</td>
<td>Flowmeter, Piezometer</td>
</tr>
<tr>
<td>Climate</td>
<td>Weather station</td>
</tr>
<tr>
<td>Dynamic response (seismicity)</td>
<td>Strong Motion Accelerator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring Instrument</th>
<th>Behaviour</th>
<th>Reading</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowmeter (FM)</td>
<td>Water Leakage</td>
<td>Automatic</td>
<td>10</td>
</tr>
<tr>
<td>3D-Jointmeter (TJM)</td>
<td>Movement Displacement Settlement</td>
<td>Automatic</td>
<td>75</td>
</tr>
<tr>
<td>Rocmeter (RM)</td>
<td>Movement Displacement Settlement</td>
<td>Automatic</td>
<td>20</td>
</tr>
<tr>
<td>Inclinometer (IM)</td>
<td>Movement Displacement Settlement</td>
<td>Manual</td>
<td>3</td>
</tr>
<tr>
<td>Groundwater Observation Well (OW)</td>
<td>Water Level Uplift Pressure</td>
<td>Manual</td>
<td>10</td>
</tr>
<tr>
<td>Strong Motion Accelerometer (SMA)</td>
<td>Dynamic Response</td>
<td>Automatic</td>
<td>2</td>
</tr>
<tr>
<td>Leveling Bolt (LB)</td>
<td>Movement Displacement Settlement</td>
<td>Manual</td>
<td>50</td>
</tr>
<tr>
<td>Stationary Light Reflector (SR)</td>
<td>Movement Displacement Settlement</td>
<td>Manual</td>
<td>30</td>
</tr>
<tr>
<td>Weather Station</td>
<td>Rainfall Intensity Temperature Relative Humidity Barometer Wind Velocity Evaporation Pyranometer</td>
<td>Automatic</td>
<td>1</td>
</tr>
</tbody>
</table>
Emergency Planning and Dam Break Analysis
DAM SAFETY

Emergency Planning and Dam Break Analysis

- Emergency Action Plan
 - Objectives:
 - Guidelines for emergency management
 - For abnormal events, accidents, emergency events
 - Roles, responsibilities, response, communication procedures
 - For all stakeholders of the project
 - Guidelines for O&M
 - Flood operation, training, inspection, …
 - Organization
 - Internal Organization
 - Activities and Responsibilities of Owner
 - External Organization
 - Responsibilities of Lao authorities

- Dam Break Analysis
 - Basis for EAP planning (warning and evacuation planning)
 - Results shown as Inundation maps

- Dam Break Scenarios
 - Natural floods
 - Carried out for different return periods
 - 100, 1,000, 10,000 yr and PMF
 - Mis-Operation of Spillway
 - Cyber-Attack: All gates opened simultaneously
 - Dam Break flood assessment
 - Breach development at RCC Closing Structure
 - Failure of one block and the two neighboring blocks within 0.5 hrs